1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
program posdopspectra
!! Script to analyze the electron-positron momentum distributions
!! included in the _DOPPLER file. Calculated 1D distributions in
!! three different directions, normal to the (001), (011) and (111)
!! planes in the reciprocal space.
!! This corresponds to [001], [011] and [111] directions
!! for cubic systems. The script convolutes the data with
!! a Gaussian and interpolates them on an uniform grid with
!! 0.1 mrad spacing. Calculates the S and W parameters
!! of the Doppler broadening of annihilation radiation.
implicit none
!Arguments -----------------------------------
!Local variables-------------------------------
!scalars
integer, parameter:: dp=kind(0.d0)
integer :: i1,i2,i3,ifft,ii,ikpt,jj
integer :: nfft,nkpt,npoints1,npoints2,npoints3
integer :: nd1,nd2,nd3,nd4,nd5,nd6
integer :: nspline
real(dp) :: der1,der2,der3,der4,der5,der6,fwhm,lambda,norm,S_dop
real(dp) :: zero,one,two,three,two_pi,InvFineStruct
real(dp) :: vec,vec0,ucvol,W_dop
logical :: file_exists
character(len=264) :: filnam
!arrays
integer,allocatable :: ipoint1(:),ipoint2(:),ipoint3(:)
integer,allocatable :: weight1(:),weight2(:),weight3(:)
real(dp) :: a(3),b(3),c(3),dir(3),rprim(3,3),smax,wmin,wmax
real(dp),allocatable :: der001(:),der011(:),der111(:)
real(dp),allocatable :: gauss(:),mesh_spline(:)
real(dp),allocatable :: pcart(:,:,:),rho_moment(:,:),rho_001(:),rho001(:),rho001conv(:)
real(dp),allocatable :: rho_011(:),rho011(:),rho011conv(:),rho_111(:),rho111(:),rho111conv(:)
real(dp),allocatable :: spectrum1(:,:),spectrum3(:,:),spectrum2(:,:)
real(dp),allocatable :: vec001(:),vec011(:),vec111(:)
character(len=500) :: msg
!******************************************************************
zero=0._dp;one=1._dp;two=2._dp;three=3._dp
two_pi=8*atan(1.d0)
InvFineStruct=137.035999679_dp ! Inverse of fine structure constant
! Get name of the momentum distribution file
write(*,*)
write(*,*) ' What is the name of the 3D electron-positron momentum distribution file?'
read(*,'(a)')filnam
write(*,*)
! Checking the existence of data file
INQUIRE(FILE=filnam, EXIST=file_exists) ! file_exists will be TRUE if the file
if (.not.file_exists) then
write(*,*) 'Missing data file: '//TRIM(filnam)
stop
end if
write(*,'(a,a,a,i4)')' posdopspectra : read file ',trim(filnam)
write(*,*)
write(*,'(a,a)') 'Opening file ', filnam
open(unit=19,file=filnam,form='unformatted',status='old')
read(19) nfft,nkpt,ucvol,rprim
ALLOCATE(pcart(3,nfft,nkpt))
ALLOCATE(rho_moment(nfft,nkpt))
do ikpt=1,nkpt
read(19) pcart(1:3,1:nfft,ikpt),rho_moment(1:nfft,ikpt)
end do
write(*,*) ' => Your momentum distribution file is : ',trim(filnam)
write(*,*) ' Choose FWHM (in mrad) for the convolution.'
read(*,*) fwhm
! Calculate vectors normal to three different planes in the reciprocal space - (001), (011) and (111)
! They are equivalent to [001], [011] and [111] directions in the real space
! and to [001], [011] and [111] directions in the reciprocal space for cubic systems
! Vector normal to the (001) plane
dir=(/zero ,zero ,one/)
a(:)=matmul(rprim(:,:),dir)
a(:)=a(:)/(sqrt(dot_product(a,a)))
! Vector normal to the (011) plane
dir=(/zero ,one ,one/)
b(:)=matmul(rprim(:,:),dir)
b(:)=b(:)/(sqrt(dot_product(b,b)))
! Vector normal to the (111) plane
dir=(/one ,one ,one/)
c(:)=matmul(rprim(:,:),dir)
c(:)=c(:)/(sqrt(dot_product(c,c)))
! Calculate the number of different points in the three directions (or equivalent)
! and attribute the lenght of the corresponding vector
ALLOCATE(vec001 (nfft*nkpt))
ALLOCATE(vec011 (nfft*nkpt))
ALLOCATE(vec111 (nfft*nkpt))
ALLOCATE(ipoint1(nfft*nkpt))
ALLOCATE(ipoint2(nfft*nkpt))
ALLOCATE(ipoint3(nfft*nkpt))
vec001=zero;vec011=zero;vec111=zero
npoints1=1;npoints2=1;npoints3=1
vec001(1)=a(1)*pcart(1,1,1)+a(2)*pcart(2,1,1)+a(3)*pcart(3,1,1)
vec011(1)=b(1)*pcart(1,1,1)+b(2)*pcart(2,1,1)+b(3)*pcart(3,1,1)
vec111(1)=c(1)*pcart(1,1,1)+c(2)*pcart(2,1,1)+c(3)*pcart(3,1,1)
ipoint1(1)=1;ipoint2(1)=1;ipoint3(1)=1
outer1: do jj=2,nkpt*nfft
ikpt=int((jj-1)/nfft)+1;ifft=mod(jj-1,nfft)+1
do ii=1,npoints1
vec0=vec001(ii)-a(1)*pcart(1,ifft,ikpt)-a(2)*pcart(2,ifft,ikpt)-a(3)*pcart(3,ifft,ikpt)
if (abs(vec0)<0.00001) then
ipoint1(jj)=ii
cycle outer1
end if
end do
npoints1 = npoints1 + 1
ipoint1(jj) = maxval(ipoint1)+1
vec001 (npoints1) = a(1)*pcart(1,ifft,ikpt)+a(2)*pcart(2,ifft,ikpt)+a(3)*pcart(3,ifft,ikpt)
end do outer1
outer2: do jj=2,nkpt*nfft
ikpt=int((jj-1)/nfft)+1;ifft=mod(jj-1,nfft)+1
do ii=1,npoints2
vec0=vec011(ii)-b(1)*pcart(1,ifft,ikpt)-b(2)*pcart(2,ifft,ikpt)-b(3)*pcart(3,ifft,ikpt)
if (abs(vec0)<0.00001) then
ipoint2(jj)=ii
cycle outer2
end if
end do
npoints2 = npoints2 + 1
ipoint2(jj) = maxval(ipoint2)+1
vec011 (npoints2) = b(1)*pcart(1,ifft,ikpt)+b(2)*pcart(2,ifft,ikpt)+b(3)*pcart(3,ifft,ikpt)
end do outer2
outer3: do jj=2,nkpt*nfft
ikpt=int((jj-1)/nfft)+1;ifft=mod(jj-1,nfft)+1
do ii=1,npoints3
vec0=vec111(ii)-c(1)*pcart(1,ifft,ikpt)-c(2)*pcart(2,ifft,ikpt)-c(3)*pcart(3,ifft,ikpt)
if (abs(vec0)<0.00001) then
ipoint3(jj)=ii
cycle outer3
end if
end do
npoints3 = npoints3 + 1
ipoint3(jj) = maxval(ipoint3)+1
vec111 (npoints3) = c(1)*pcart(1,ifft,ikpt)+c(2)*pcart(2,ifft,ikpt)+c(3)*pcart(3,ifft,ikpt)
end do outer3
! Calculate the weight of each point in the three directions
ALLOCATE(weight1(npoints1))
ALLOCATE(weight2(npoints2))
ALLOCATE(weight3(npoints3))
do ii=1,npoints1
weight1(ii)=count((ipoint1(1:nfft*nkpt)==ii))
end do
do ii=1,npoints2
weight2(ii)=count((ipoint2(1:nfft*nkpt)==ii))
end do
do ii=1,npoints3
weight3(ii)=count((ipoint3(1:nfft*nkpt)==ii))
end do
! Transform vector lenght to mrad
vec001(1:npoints1)=vec001(1:npoints1)*two_pi*1000_dp/InvFineStruct
vec011(1:npoints2)=vec011(1:npoints2)*two_pi*1000_dp/InvFineStruct
vec111(1:npoints3)=vec111(1:npoints3)*two_pi*1000_dp/InvFineStruct
ALLOCATE(rho001(npoints1))
ALLOCATE(rho011(npoints2))
ALLOCATE(rho111(npoints3))
do jj=1,nkpt*nfft
ikpt=int((jj-1)/nfft)+1;ifft=mod(jj-1,nfft)+1
i1=ipoint1(jj);i2=ipoint2(jj);i3=ipoint3(jj)
rho001(i1)=rho001(i1)+rho_moment(ifft,ikpt)/weight1(i1)
rho011(i2)=rho011(i2)+rho_moment(ifft,ikpt)/weight2(i2)
rho111(i3)=rho111(i3)+rho_moment(ifft,ikpt)/weight3(i3)
end do
DEALLOCATE(weight1)
DEALLOCATE(weight2)
DEALLOCATE(weight3)
DEALLOCATE(ipoint1)
DEALLOCATE(ipoint2)
DEALLOCATE(ipoint3)
DEALLOCATE(pcart)
DEALLOCATE(rho_moment)
! Sort the vectors in ascending order
nd1=-count(vec001(1:npoints1)<0);nd2=npoints1+nd1-1
nd3=-count(vec011(1:npoints2)<0);nd4=npoints2+nd3-1
nd5=-count(vec111(1:npoints3)<0);nd6=npoints3+nd5-1
ALLOCATE(spectrum1(2,nd1:nd2))
ALLOCATE(spectrum2(2,nd3:nd4))
ALLOCATE(spectrum3(2,nd5:nd6))
do ii=1,npoints1
i1=count(vec001(ii)>vec001(1:npoints1))+nd1
spectrum1(1,i1)=vec001(ii)
spectrum1(2,i1)=rho001(ii)
end do
do ii=1,npoints2
i1=count(vec011(ii)>vec011(1:npoints2))+nd3
spectrum2(1,i1)=vec011(ii)
spectrum2(2,i1)=rho011(ii)
end do
do ii=1,npoints3
i1=count(vec111(ii)>vec111(1:npoints3))+nd5
spectrum3(1,i1)=vec111(ii)
spectrum3(2,i1)=rho111(ii)
end do
DEALLOCATE(vec001)
DEALLOCATE(rho001)
DEALLOCATE(vec011)
DEALLOCATE(vec111)
DEALLOCATE(rho011)
DEALLOCATE(rho111)
! Convolve the 001 spectrum with a Gaussian
ALLOCATE(rho001conv(nd1:nd2))
ALLOCATE(rho011conv(nd3:nd4))
ALLOCATE(rho111conv(nd5:nd6))
rho001conv=zero; rho011conv=zero;rho111conv=zero
call conv( nd1, nd2, spectrum1, fwhm, rho001conv)
call conv( nd3, nd4, spectrum2, fwhm, rho011conv)
call conv( nd5, nd6, spectrum3, fwhm, rho111conv)
! Write the raw and convoluted spectra to the doppler_out file
open(unit=114, file='doppler_out', status='replace')
write(114,*)'Raw momentum distribution in [001] direction:'
write(114,*)
write(114,*)' p001 (mrad): Probalility:'
do ii=0,nd2
write(114,*) spectrum1(1,ii),spectrum1(2,ii)
end do
write(114,*)
write(114,*)'Convoluted momentum distribution in [001] direction:'
write(114,*)'FWHM (in mrad) =',fwhm
write(114,*)
write(114,*)' p001 (mrad): Probalility:'
do ii=0,nd2
write(114,*) spectrum1(1,ii),rho001conv(ii)
end do
write(114,*)'Raw momentum distribution in [011] direction:'
write(114,*)
write(114,*)' p011 (mrad): Probalility:'
do ii=0,nd4
write(114,*) spectrum2(1,ii),spectrum2(2,ii)
end do
write(114,*)
write(114,*)'Convoluted momentum distribution in [011] direction:'
write(114,*)'FWHM (in mrad) =',fwhm
write(114,*)
write(114,*)' p011 (mrad): Probalility:'
do ii=0,nd4
write(114,*) spectrum2(1,ii),rho011conv(ii)
end do
write(114,*)'Raw momentum distribution in [111] direction:'
write(114,*)
write(114,*)' p111 (mrad): Probalility:'
do ii=0,nd6
write(114,*) spectrum3(1,ii),spectrum3(2,ii)
end do
write(114,*)
write(114,*)'Convoluted momentum distribution in [111] direction:'
write(114,*)'FWHM (in mrad) =',fwhm
write(114,*)
write(114,*)' p111 (mrad): Probalility:'
do ii=0,nd6
write(114,*) spectrum3(1,ii),rho111conv(ii)
end do
! Interpolate the spectra
der1=rho001conv(nd1);der2=rho001conv(nd2)
der3=rho011conv(nd3);der4=rho011conv(nd4)
der5=rho111conv(nd5);der6=rho111conv(nd6)
ALLOCATE(der001(nd1:nd2))
ALLOCATE(der011(nd3:nd4))
ALLOCATE(der111(nd5:nd6))
call spline(spectrum1(1,:),rho001conv,nd2-nd1,der1,der2,der001)
call spline(spectrum2(1,:),rho011conv,nd4-nd3,der3,der4,der011)
call spline(spectrum3(1,:),rho111conv,nd6-nd5,der5,der6,der111)
nspline=1001
ALLOCATE(mesh_spline(nspline))
ALLOCATE(rho_001(nspline))
ALLOCATE(rho_011(nspline))
ALLOCATE(rho_111(nspline))
do ii=1,nspline
mesh_spline(ii)=0.1_dp*(ii-1)
end do
call splint(nd2-nd1,spectrum1(1,:),rho001conv,der001,nspline,mesh_spline,rho_001)
call splint(nd4-nd3,spectrum2(1,:),rho011conv,der011,nspline,mesh_spline,rho_011)
call splint(nd6-nd5,spectrum3(1,:),rho111conv,der111,nspline,mesh_spline,rho_111)
DEALLOCATE(rho001conv)
DEALLOCATE(rho011conv)
DEALLOCATE(rho111conv)
DEALLOCATE(der001)
DEALLOCATE(der011)
DEALLOCATE(der111)
DEALLOCATE(spectrum1)
DEALLOCATE(spectrum2)
DEALLOCATE(spectrum3)
! Write the interpolated and normalized 001 spectrum to the rho_001 file
lambda=sum(rho_001(:))*(mesh_spline(2)-mesh_spline(1))
rho_001(:)=rho_001(:)/lambda
lambda=sum(rho_011(:))*(mesh_spline(2)-mesh_spline(1))
rho_011(:)=rho_011(:)/lambda
lambda=sum(rho_111(:))*(mesh_spline(2)-mesh_spline(1))
rho_111(:)=rho_111(:)/lambda
open(unit=111, file='rho_001', status='replace')
do ii=1,nspline
write(111,'(f10.2,es24.15)') mesh_spline(ii),rho_001(ii)
end do
close(111)
open(unit=112, file='rho_111', status='replace')
do ii=1,nspline
write(112,'(f10.2,es24.15)') mesh_spline(ii),rho_111(ii)
end do
close(112)
open(unit=113, file='rho_011', status='replace')
do ii=1,nspline
write(113,'(f10.2,es24.15)') mesh_spline(ii),rho_011(ii)
end do
close(113)
write(*,*)
write(*,*) 'Convoluted and normalized spectra on a uniform grid&
& have been written to rho_001, rho_011 and rho_111 files.'
write(*,*)
! Calculate the S and W parameters using the 001 projection
write(*,*) ' Give the upper limit for S calculations (in mrad)'
read(*,*) smax
write(*,*) ' Give ranges for W calculations (in mrad)'
read(*,*) wmin,wmax
S_dop=zero;W_dop=zero
do ii=2,nint(smax*10+1)
S_dop=S_dop+(rho_001(ii)+rho_011(ii)+rho_111(ii))/three
end do
S_dop=(S_dop+rho_001(1)/two)*0.1_dp
do ii=nint(wmin*10+1),nint(wmax*10+1)
W_dop=W_dop+(rho_001(ii)+rho_011(ii)+rho_111(ii))/three
end do
W_dop=W_dop*0.1_dp
write(*,*) 'S parameter:', S_dop
write(*,*) 'W parameter:', W_dop
DEALLOCATE(mesh_spline)
DEALLOCATE(rho_001)
DEALLOCATE(rho_011)
DEALLOCATE(rho_111)
!Write results
write(114,*)'S parameter:',S_dop
write(114,*)'W parameter:',W_dop
close(114)
write(*,*)
write(*,*) 'S and W parameters and momentum distribution spectra have been written to the doppler_out file.'
write(*,*)
end program posdopspectra
!!***
!!***
!! NAME
!! conv
!!
!! FUNCTION
!! Computes convolution with a gaussian with fwhm.
subroutine conv( ng1, ng2, spectrum, fwhm, rhoconv)
implicit none
integer, parameter:: dp=kind(0.d0)
integer, intent(in) :: ng1
integer, intent(in) :: ng2
real(dp), intent(in) :: fwhm
real(dp), intent(in) :: spectrum(2,ng1:ng2)
real(dp), intent(out) :: rhoconv(ng1:ng2)
integer :: i1,i2,iz
real(dp) :: two,zero
real(dp), allocatable :: gauss(:)
zero=0._dp;two=2._dp
ALLOCATE(gauss(ng1:ng2))
gauss=zero
do iz=ng1,ng2
gauss(iz)=exp(-dble(spectrum(1,iz)*spectrum(1,iz))/(two*((fwhm/2.35482_dp)**2)))
end do
do iz=ng1,0
rhoconv(iz) = zero
i1=ng1
i2=iz-ng1
do while (i2 >= ng1)
if (i2<=ng2) then
rhoconv(iz) = rhoconv(iz) + spectrum(2,i1)*gauss(i2)
end if
i1 = i1+1
i2 = i2-1
end do
end do
do iz=1,ng2
rhoconv(iz) = zero
i1=iz-ng2
i2=ng2
do while (i1 <= ng2)
if (i1>=ng1) then
rhoconv(iz) = rhoconv(iz) + spectrum(2,i1)*gauss(i2)
end if
i1 = i1+1
i2 = i2-1
end do
end do
DEALLOCATE(gauss)
end subroutine conv
!!***
!!***
! subroutines spline and splint copied from the ABINIT source
! from the m_splines module
! (/src/28_numeric_noabirule/m_splines.F90)
subroutine spline( t, y, n, ybcbeg, ybcend, ypp )
!
! Author:
!
! John Burkardt
! (XGonze got it from http://www.psc.edu/~burkardt/src/spline/spline.html)
!
! Parameters:
!
! Input, integer N, the number of data points; N must be at least 2.
! In the special case where N = 2 and IBCBEG = IBCEND = 0, the
! spline will actually be linear.
!
! Input, double precision T(N), the knot values, that is, the points where data
! is specified. The knot values should be distinct, and increasing.
!
! Input, double precision Y(N), the data values to be interpolated.
!
! Input, double precision YBCBEG, YBCEND, the values to be used in the boundary
! conditions if IBCBEG or IBCEND is equal to 1 or 2.
!
! Output, double precision YPP(N), the second derivatives of the cubic spline.
implicit none
integer, parameter:: dp=kind(0.d0)
integer, intent(in) :: n
real(dp), intent(in) :: t(n)
real(dp), intent(in) :: y(n)
real(dp), intent(in) :: ybcbeg
real(dp), intent(in) :: ybcend
real(dp), intent(out) :: ypp(n)
integer :: ibcbeg
integer :: ibcend
integer :: i,k
real(dp) :: ratio,pinv
real(dp), allocatable :: tmp(:)
ALLOCATE(tmp(n))
!
! XG041127
ibcbeg=1 ; ibcend=1
if(ybcbeg>1.0d+30)ibcbeg=0
if(ybcend>1.0d+30)ibcend=0
!
! Set the first and last equations.
!
if ( ibcbeg == 0 ) then
ypp(1) = 0.d0
tmp(1) = 0.d0
else if ( ibcbeg == 1 ) then
ypp(1) = -0.5d0
tmp(1) = (3.d0/(t(2)-t(1)))*((y(2)-y(1))/(t(2)-t(1))-ybcbeg)
end if
if ( ibcend == 0 ) then
ypp(n) = 0.d0
tmp(n) = 0.d0
else if ( ibcend == 1 ) then
ypp(n) = 0.5d0
tmp(n) = (3.d0/(t(n)-t(n-1)))*(ybcend-(y(n)-y(n-1))/(t(n)-t(n-1)))
end if
!
! Set the intermediate equations.
!
do i=2,n-1
ratio=(t(i)-t(i-1))/(t(i+1)-t(i-1))
pinv = 1.0d0/(ratio*ypp(i-1) + 2.0d0)
ypp(i) = (ratio-1.0d0)*pinv
tmp(i)=(6.0d0*((y(i+1)-y(i))/(t(i+1)-t(i))-(y(i)-y(i-1)) &
& /(t(i)-t(i-1)))/(t(i+1)-t(i-1))-ratio*tmp(i-1))*pinv
if (abs(tmp(i))<1.d5*tiny(0.d0)) tmp(i)=0.d0 !MT20050927
enddo
! Solve the equations
ypp(n) = (tmp(n)-ypp(n)*tmp(n-1))/(ypp(n)*ypp(n-1)+1.0d0)
do k=n-1,1,-1
ypp(k)=ypp(k)*ypp(k+1)+tmp(k)
enddo
DEALLOCATE(tmp)
return
end subroutine spline
!!***
!!***
!----------------------------------------------------------------------
!! NAME
!! splint
!!
!! Compute spline interpolation. There is no hypothesis
!! about the spacing of the input grid points.
!!
!! INPUTS
!! nspline: number of grid points of input mesh
!! xspline(nspline): input mesh
!! yspline(nspline): function on input mesh
!! ysplin2(nspline): second derivative of yspline on input mesh
!! nfit: number of points of output mesh
!! xfit(nfit): output mesh
!!
!! OUTPUT
!! yfit(nfit): function on output mesh
!! [ierr]=A non-zero value is used to signal that some points in xfit exceed xspline(nspline).
!! The input value is incremented by the number of such points.
subroutine splint(nsplin,xspline,yspline,ysplin2,nfit,xfit,yfit)
implicit none
integer, parameter:: dp=kind(0.d0)
integer, intent(in) :: nfit, nsplin
real(dp), intent(in) :: xspline(nsplin)
real(dp), intent(in) :: yspline(nsplin)
real(dp), intent(in) :: ysplin2(nsplin)
real(dp), intent(in) :: xfit(nfit)
real(dp), intent(out) :: yfit(nfit)
!local
integer :: left,i,k,right,my_err
real(dp) :: delarg,invdelarg,aa,bb
!source
my_err=0
left = 1
do i=1, nfit
yfit(i)=0.d0 ! Initialize for the unlikely event that rmax exceed r(mesh)
!
do k=left+1, nsplin
if(xspline(k) >= xfit(i)) then
if(xspline(k-1) <= xfit(i)) then
right = k
left = k-1
end if
delarg= xspline(right) - xspline(left)
invdelarg= 1.0d0/delarg
aa= (xspline(right)-xfit(i))*invdelarg
bb= (xfit(i)-xspline(left))*invdelarg
yfit(i) = aa*yspline(left) + bb*yspline(right) &
& +( (aa*aa*aa-aa)*ysplin2(left) + &
& (bb*bb*bb-bb)*ysplin2(right) ) *delarg*delarg/6.0d0
exit
end if
end do ! k
!
if (k==nsplin+1) my_err=my_err+1 ! xfit not found
end do ! i
end subroutine splint
|