File: rf_final.py

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (645 lines) | stat: -rwxr-xr-x 28,607 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# Author: S. Ponc\'e + Y. Gillet
# Date: 30/04/2013 -- 11/09/2014 -- 07/08/2015 -- 21/12/2020
# Version 1.5
# Classes needed for the temperature_final.py script
# 2015 : Spin + Lifetime coding
# 2020 : Port to python3

#from __future__ import division, print_function
import numpy as N
from numpy import zeros
from numpy import complex, float
import itertools as Iter
from functools import partial
import multiprocessing
import netCDF4 as nc
import sys
import os

# Variables
tol6 = 1E-6
tol8 = 1E-8
Ha2eV = 27.21138386
kb_HaK = 3.1668154267112283e-06

###########
# CLASSES #
###########

class system:
  natom  = 0
  ntypat = 0
  nkpt   = 0
  kpt    = None
  Kptns  = None
  EIG    = None
  nband  = 0
  acell  = None
  occ    = None
  amu    = None
  rprim  = N.empty((3, 3))
  iqpt   = None
  IFC    = None
  filename     = None
  filefullpath = None
  def __init__(self,directory=None,filename=None):
    if filename == None:return
    if directory == None:directory='.'
    self.filename = filename
    self.filefullpath = '%s/%s' %(directory,filename)
    if self.filefullpath[-4:] == '_DDB':
      self.DDB_file_open(self.filefullpath)
    if self.filefullpath[-10:] == '_EIGR2D.nc' or self.filefullpath[-10:] == '_EIGI2D.nc':
      self.EIG2Dnc_file_open(self.filefullpath)
    if self.filefullpath[-7:] == '_EIG.nc':
      self.EIG_file_open(self.filefullpath)
    if self.filefullpath[-4:] == '_EIG':
      raise Exception('Please provide a netCDF _EIG.nc file!\n\
         This is mandatory for good accuracy.' )
    if self.filefullpath[-7:] == '_GKK.nc':
      self.GKKnc_file_open(self.filefullpath)
    if self.filefullpath[-6:] == '_EP.nc':
      self.EP_file_open(self.filefullpath)

# Read _EP.nc file
  def EP_file_open(self,filefullpath):
    if not (os.path.isfile(filefullpath)):
      raise Exception('The file "%s" does not exists!' %filefullpath)
    root = nc.Dataset(filefullpath,'r')
    self.natom = len(root.dimensions['number_of_atoms'])
    self.nkpt = len(root.dimensions['number_of_kpoints'])
    self.nband = len(root.dimensions['max_number_of_states'])
    self.ntemp = len(root.dimensions['number_of_temperature'])
    self.nsppol = len(root.dimensions['number_of_spins'])
    self.nbQ = len(root.dimensions['number_of_qpoints'])
    self.temp = root.variables['temperature'][:]
    self.occ = root.variables['occupations'][:,:,:] # number_of_spins, number_of_kpoints, max_number_of_states
    self.kpt = root.variables['reduced_coordinates_of_kpoints'][:,:]
    self.eigenvalues = root.variables['eigenvalues'][:,:,:] #number_of_spins, number_of_kpoints, max_number_of_states
    self.rprimd = root.variables['primitive_vectors'][:,:]
    self.zpm = root.variables['zero_point_motion'][:,:,:,:,:] # nsppol, number_of_temperature, 
                                                   # number_of_kpoints, max_number_of_states, cplex 
    root.close()

# Read _EIG.nc file
  def EIG_file_open(self,filefullpath):
    if not (os.path.isfile(filefullpath)):
      raise Exception('The file "%s" does not exists!' %filefullpath)
    root = nc.Dataset(filefullpath,'r')
    self.EIG = root.variables['Eigenvalues'][:,:,:] # nsppol,nkpt,nband 
    self.Kptns = root.variables['Kptns'][:,:]
    NBandK = root.variables['NBandK'][:]
    self.nband =  N.int(NBandK[0,0])
    root.close()

# Open the Fan.nc file and read it
  def GKKnc_file_open(self,filefullpath):
    if not (os.path.isfile(filefullpath)):
      raise Exception('The file "%s" does not exists!' %filefullpath)
    root = nc.Dataset(filefullpath,'r')
    self.natom = len(root.dimensions['number_of_atoms'])
    self.nkpt = len(root.dimensions['number_of_kpoints'])
    self.nband = len(root.dimensions['max_number_of_states'])
    self.nsppol = len(root.dimensions['number_of_spins'])
    self.occ = root.variables['occupations'][:,:,:] # number_of_spins, number_of_kpoints, max_number_of_states
    GKKtmp = root.variables['second_derivative_eigenenergies_actif'][:,:,:,:,:] #max_number_of_states,number_of_atoms, 
                                       # number_of_cartesian_directions, number_of_kpoints, product_mband_nsppol*2
    GKKtmp2 = N.einsum('ijkno->nokji', GKKtmp)
    #GKKtmp2(nkpt,nband*nsppol*2,3,natom,nband)
    GKKtmp3 = GKKtmp2[:, ::2, ...]  # Slice the even numbers
    GKKtmp4 = GKKtmp2[:, 1::2, ...] # Slice the odd numbers
    self.GKK = 1j*GKKtmp4
    self.GKK += GKKtmp3
    self.GKK_bis = N.reshape(self.GKK,(self.nkpt,self.nsppol,self.nband,3,self.natom,self.nband))
    self.eigenvalues = root.variables['eigenvalues'][:,:,:] #number_of_spins, number_of_kpoints, max_number_of_states   
    self.kpt = root.variables['reduced_coordinates_of_kpoints'][:,:]
    self.iqpt = root.variables['current_q_point'][:]
    self.wtq = root.variables['current_q_point_weight'][:]
    self.rprimd = root.variables['primitive_vectors'][:,:]
    root.close()

# Open the EIG2D.nc file and read it
  def EIG2Dnc_file_open(self,filefullpath):
    if not (os.path.isfile(filefullpath)):
      raise Exception('The file "%s" does not exists!' %filefullpath)
    root = nc.Dataset(filefullpath,'r')
    self.natom = len(root.dimensions['number_of_atoms'])
    self.nkpt = len(root.dimensions['number_of_kpoints'])
    self.nband = len(root.dimensions['max_number_of_states'])
    self.nsppol = len(root.dimensions['number_of_spins'])
    self.occ = root.variables['occupations'][:,:,:] # number_of_spins, number_of_kpoints, max_number_of_states
    EIG2Dtmp = root.variables['second_derivative_eigenenergies'][:,:,:,:,:,:,:] #number_of_atoms, 
                                       # number_of_cartesian_directions, number_of_atoms, number_of_cartesian_directions,
                                       # number_of_kpoints, product_mband_nsppol, cplex
    EIG2Dtmp2 = N.einsum('ijklmno->mnlkjio', EIG2Dtmp)
    #EIG2Dtmp2(nkpt,mband*nsppol,3,natom,3,natom,2)
    self.EIG2D = 1j*EIG2Dtmp2[...,1]
    self.EIG2D += EIG2Dtmp2[...,0]
    #EIG2D(nkpt,mband*nsppol,3,natom,3,natom)
    self.EIG2D_bis = N.reshape(self.EIG2D,(self.nkpt,self.nsppol,self.nband,3,self.natom,3,self.natom))
    #EIG2D_bis(nkpt,nband,nsppol,3,natom,3,natom)
    self.eigenvalues = root.variables['eigenvalues'][:,:,:] #number_of_spins, number_of_kpoints, max_number_of_states   
    self.kpt = root.variables['reduced_coordinates_of_kpoints'][:,:]
    self.iqpt = root.variables['current_q_point'][:]
    self.wtq = root.variables['current_q_point_weight'][:]
    self.rprimd = root.variables['primitive_vectors'][:,:]
    root.close()

# Open the DDB file and read it
  def DDB_file_open(self,filefullpath):
    if not (os.path.isfile(filefullpath)):
      raise Exception('The file "%s" does not exists!' %filefullpath)
    with open(filefullpath,'r') as DDB:
      Flag = 0
      Flag2 = False
      Flag3 = False
      ikpt = 0
      typatdone = 0
      for line in DDB:
        if line.find('natom') > -1:
          self.natom = N.int(line.split()[1])
        if line.find('nkpt') > -1:
          self.nkpt = N.int(line.split()[1])
          self.kpt  = zeros((self.nkpt,3))
        if line.find('ntypat') > -1:
          self.ntypat = N.int(line.split()[1])
        if line.find('nband') > -1:
          self.nband = N.int(line.split()[1])
        if line.find('acell') > -1:
          line = line.replace('D','E')
          tmp = line.split()
          self.acell = [N.float(tmp[1]),N.float(tmp[2]),N.float(tmp[3])]
        if Flag2:
          line = line.replace('D','E')
          for ii in N.arange(3,self.ntypat):
            self.amu[ii] = N.float(line.split()[ii-3])
            Flag2 = False
        if line.find('amu') > -1:
          line = line.replace('D','E')
          self.amu = zeros((self.ntypat))
          if self.ntypat > 3:
            for ii in N.arange(3):
              self.amu[ii] = N.float(line.split()[ii+1])
              Flag2 = True 
          else:
            for ii in N.arange(self.ntypat):
              self.amu[ii] = N.float(line.split()[ii+1])
        if line.find(' kpt ') > -1:
          line = line.replace('D','E')
          tmp = line.split()
          self.kpt[0,0:3] = [float(tmp[1]),float(tmp[2]),float(tmp[3])]
          ikpt = 1
          continue
        if ikpt < self.nkpt and ikpt > 0:
          line = line.replace('D','E')
          tmp = line.split()
          self.kpt[ikpt,0:3] = [float(tmp[0]),float(tmp[1]),float(tmp[2])]  
          ikpt += 1
          continue
        if Flag == 2:
          line = line.replace('D','E')
          tmp = line.split()
          self.rprim[2,0:3] = [float(tmp[0]),float(tmp[1]),float(tmp[2])]
          Flag = 0
        if Flag == 1:
          line = line.replace('D','E')
          tmp = line.split()
          self.rprim[1,0:3] = [float(tmp[0]),float(tmp[1]),float(tmp[2])]
          Flag = 2
        if line.find('rprim') > -1:
          line = line.replace('D','E')
          tmp = line.split()
          self.rprim[0,0:3] = [float(tmp[1]),float(tmp[2]),float(tmp[3])]
          Flag = 1
        if Flag3:
          line = line.replace('D','E')
          if (self.natom-typatdone)*1.0/12 < 1.001:
            for ii in N.arange(self.natom-typatdone):
              self.typat[typatdone+ii] = N.float(line.split()[ii])
              Flag3 = False
          else:
            for ii in N.arange(12):
              self.typat[typatdone+ii] = N.float(line.split()[ii])
            typatdone += 12
        if line.find(' typat') > -1:
          self.typat = zeros((self.natom))
          if self.natom > 12:
            for ii in N.arange(12):
              self.typat[ii] = N.float(line.split()[ii+1])
              Flag3 = True
              typatdone = 12
          else:
            for ii in N.arange(self.natom):
              self.typat[ii] = N.float(line.split()[ii+1])
        # Read the actual d2E/dRdR matrix
        if Flag == 3:
          line = line.replace('D','E')
          tmp = line.split()
          self.IFC[int(tmp[0])-1,int(tmp[1])-1,int(tmp[2])-1,int(tmp[3])-1] = \
            complex(float(tmp[4]),float(tmp[5]))
        # Read the current Q-point
        if line.find('qpt') > -1:
          line = line.replace('D','E')
          tmp = line.split()
          self.iqpt = [N.float(tmp[1]),N.float(tmp[2]),N.float(tmp[3])]
          Flag = 3
          self.IFC = zeros((3,self.natom,3,self.natom),dtype=complex)

#################################################
# Usefull definition to avoid code duplications #
#################################################
def compute_dynmat(DDB):
# Retrive the amu for each atom
  amu = zeros(DDB.natom)
  for ii in N.arange(DDB.natom):
    jj = DDB.typat[ii].astype(int)
    amu[ii] = DDB.amu[jj-1]
# Calcul of gprimd from rprimd
  rprimd = DDB.rprim*DDB.acell
  gprimd = N.linalg.inv(N.matrix(rprimd))
# Transform from 2nd-order matrix (non-cartesian coordinates, 
# masses not included, asr not included ) from DDB to
# dynamical matrix, in cartesian coordinates, asr not imposed.
  IFC_cart = zeros((3,DDB.natom,3,DDB.natom),dtype=complex)
  for ii in N.arange(DDB.natom):
    for jj in N.arange(DDB.natom):
      for dir1 in N.arange(3):
        for dir2 in N.arange(3):
          for dir3 in N.arange(3):
            for dir4 in N.arange(3):
              IFC_cart[dir1,ii,dir2,jj] += gprimd[dir1,dir3]*DDB.IFC[dir3,ii,dir4,jj] \
            *gprimd[dir2,dir4]
# Reduce the 4 dimensional IFC_cart matrice to 2 dimensional Dynamical matrice.
  ipert1 = 0
  Dyn_mat = zeros((3*DDB.natom,3*DDB.natom),dtype=complex)
  while ipert1 < 3*DDB.natom:
    for ii in N.arange(DDB.natom):
      for dir1 in N.arange(3):
        ipert2 = 0
        while ipert2 < 3*DDB.natom:
          for jj in N.arange(DDB.natom):
            for dir2 in N.arange(3):
              Dyn_mat[ipert1,ipert2] = IFC_cart[dir1,ii,dir2,jj]*(5.4857990965007152E-4)/ \
                   N.sqrt(amu[ii]*amu[jj])
              ipert2 += 1
        ipert1 += 1
# Hermitianize the dynamical matrix
  dynmat = N.matrix(Dyn_mat)
  dynmat = 0.5*(dynmat + dynmat.transpose().conjugate())

# Solve the eigenvalue problem with linear algebra (Diagonalize the matrix)
  [eigval,eigvect]=N.linalg.eigh(Dyn_mat)

# Orthonormality relation 
  ipert = 0
  for ii in N.arange(DDB.natom):
    for dir1 in N.arange(3):
     eigvect[ipert] = (eigvect[ipert])*N.sqrt(5.4857990965007152E-4/amu[ii])
     ipert += 1
  kk = 0
  for jj in eigval:
    if jj < 0.0:
      print("WARNING: An eigenvalue is negative with value: ",jj," ... but proceed with value 0.0")
      eigval[kk] = 0.0
      kk += 1
    else:
      kk += 1
  omega = N.sqrt(eigval) #*5.4857990965007152E-4)
#  print "omega",omega

# The acoustic phonon at Gamma should NOT contribute because they should be zero.
# Moreover with the translational invariance the ZPM will be 0 anyway for these
# modes but the FAN and DDW will have a non physical value. We should therefore 
# neglect these values.
#  if N.allclose(DDB.iqpt,[0.0,0.0,0.0]) == True:
#    omega[0] = 0.0
#    omega[1] = 0.0
#    omega[2] = 0.0

  return omega,eigvect,gprimd

# -----------------------------------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------------------------

def get_reduced_displ(natom,eigvect,omega,gprimd):
  displ_FAN =  zeros((3,3),dtype=complex)
  displ_DDW =  zeros((3,3),dtype=complex)
  displ_red_FAN2 = zeros((3*natom,natom,natom,3,3),dtype=complex)
  displ_red_DDW2 = zeros((3*natom,natom,natom,3,3),dtype=complex)
  for imode in N.arange(3*natom): #Loop on perturbation (6 for 2 atoms)
    if omega[imode].real > tol6:
      for iatom1 in N.arange(natom):
        for iatom2 in N.arange(natom):
          for idir1 in N.arange(0,3):
            for idir2 in N.arange(0,3):
              displ_FAN[idir1,idir2] = eigvect[3*iatom2+idir2,imode].conj()\
                 *eigvect[3*iatom1+idir1,imode]/(2.0*omega[imode].real)
              displ_DDW[idir1,idir2] = (eigvect[3*iatom2+idir2,imode].conj()\
                 *eigvect[3*iatom2+idir1,imode]+eigvect[3*iatom1+idir2,imode].conj()\
                 *eigvect[3*iatom1+idir1,imode])/(4.0*omega[imode].real)
              # Now switch to reduced coordinates in 2 steps (more efficient)
          tmp_displ_FAN = zeros((3,3),dtype=complex)
          tmp_displ_DDW = zeros((3,3),dtype=complex)
          for idir1 in N.arange(3):
            for idir2 in N.arange(3):
              tmp_displ_FAN[:,idir1] = tmp_displ_FAN[:,idir1]+displ_FAN[:,idir2]*gprimd[idir2,idir1]
              tmp_displ_DDW[:,idir1] = tmp_displ_DDW[:,idir1]+displ_DDW[:,idir2]*gprimd[idir2,idir1]
          displ_red_FAN = zeros((3,3),dtype=complex)
          displ_red_DDW = zeros((3,3),dtype=complex)
          for idir1 in N.arange(3):
            for idir2 in N.arange(3):
              displ_red_FAN[idir1,:] = displ_red_FAN[idir1,:] + tmp_displ_FAN[idir2,:]*gprimd[idir2,idir1]
              displ_red_DDW[idir1,:] = displ_red_DDW[idir1,:] + tmp_displ_DDW[idir2,:]*gprimd[idir2,idir1]

          displ_red_FAN2[imode,iatom1,iatom2,:,:] = displ_red_FAN[:,:]
          displ_red_DDW2[imode,iatom1,iatom2,:,:] = displ_red_DDW[:,:]
  return displ_red_FAN2,displ_red_DDW2

# ----------------------------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------------------------

def make_average(nsppol,nkpt,nband,degen,total_corr,temp=False):
  if temp:
    for ispin in N.arange(nsppol):
      for ikpt in N.arange(nkpt):
        count = 0
        iband = 0
        while iband < nband:
          if iband < nband-2:
            if ((degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]) and (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+2])):
              total_corr[:,:,ispin,ikpt,iband] = (total_corr[:,:,ispin,ikpt,iband]+total_corr[:,:,ispin,ikpt,iband+1]+total_corr[:,:,ispin,ikpt,iband+2])/3
              total_corr[:,:,ispin,ikpt,iband+1] = total_corr[:,:,ispin,ikpt,iband]
              total_corr[:,:,ispin,ikpt,iband+2] = total_corr[:,:,ispin,ikpt,iband]
              iband += 3
              continue
          if iband <  nband-1:
            if (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]):
              total_corr[:,:,ispin,ikpt,iband] = (total_corr[:,:,ispin,ikpt,iband]+total_corr[:,:,ispin,ikpt,iband+1])/2
              total_corr[:,:,ispin,ikpt,iband+1]=total_corr[:,:,ispin,ikpt,iband]
              iband +=2
              continue
          iband += 1
  else:
    for ispin in N.arange(nsppol):
      for ikpt in N.arange(nkpt):
        count = 0
        iband = 0
        while iband < nband:
          if iband < nband-2:
            if ((degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]) and (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+2])):
              total_corr[:,ispin,ikpt,iband] = (total_corr[:,ispin,ikpt,iband]+total_corr[:,ispin,ikpt,iband+1]+\
                                       total_corr[:,ispin,ikpt,iband+2])/3
              total_corr[:,ispin,ikpt,iband+1] = total_corr[:,ispin,ikpt,iband]
              total_corr[:,ispin,ikpt,iband+2] = total_corr[:,ispin,ikpt,iband]
              iband += 3
              continue
          if iband <  nband-1:
            if (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]):
              total_corr[:,ispin,ikpt,iband] = (total_corr[:,ispin,ikpt,iband]+total_corr[:,ispin,ikpt,iband+1])/2
              total_corr[:,ispin,ikpt,iband+1]=total_corr[:,ispin,ikpt,iband]
              iband +=2
              continue
          iband += 1
  return total_corr


# ---------------------------------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------------------------------

def get_bose(natom,omega,temp_info):
  bose = N.array(zeros((3*natom,len(temp_info))))
  for imode in N.arange(3*natom): #Loop on perturbation (6 for 2 atoms)
    if omega[imode].real > tol6:
      tt = 0
      for T in temp_info:
        if T < tol6:
          bose[imode,tt] = 0.0
        else:
          bose[imode,tt] = 1.0/(N.exp(omega[imode].real/(kb_HaK*T))-1)
        tt += 1
  #print bose[:,0]
  return bose

# ---------------------------------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------------------------------

def gaussian(ifreq,omegatmp,gaussian_smearing):
  x = (ifreq - omegatmp)/gaussian_smearing
  gaussian = 1.0/(N.sqrt(N.pi)) * (1.0/gaussian_smearing) * N.exp(-(x**2))  
  return gaussian

def fermidirac(freq,center,smearing):
  x = (freq-center)/smearing
  value = 0.25/smearing/(N.cosh(x/2.0))**2
  return value

def lorentzian(freq,center,smearing):
  x = (freq-center)/smearing
  value = 1.0/(N.pi)/smearing/(x**2+1)
  return value


#####################
# Compute temp. dep #
#####################

# Compute the dynamical ZPR with temperature dependence
def dynamic_zpm_temp(arguments,ddw_save,ddw_save2,type,temp_info,smearing,eig0,degen,energy,gaussian_smearing):
  
  if type == 1 or type == 2:
    nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files,GKK_files = arguments
    GKKterm = system(directory='.',filename=GKK_files)
    GKK = GKKterm.GKK_bis
  elif type == 3:
    nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files = arguments

  DDB = system(directory='.',filename=DDB_files)
  EIGR2D = system(directory='.',filename=EIGR2D_files)
  ntemp = len(temp_info)
  if type == 1 or type == 2:
    total_corr = zeros((4+2*len(energy),ntemp,EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband),dtype=complex)
  elif type == 3:
    total_corr = zeros((4+len(energy),ntemp,EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband),dtype=complex)
  eigq = system(directory='.',filename=eigq_files)

# If the calculation is on a Homogenous q-point mesh
# retreve the weight of the q-point
  if (wtq == 0):
    wtq = EIGR2D.wtq
    wtq = wtq[0]

# Current Q-point calculated
  print("Q-point: ",nbqpt," with wtq =",wtq," and reduced coord.",EIGR2D.iqpt)
  current = multiprocessing.current_process()
  file_name = str('PYLOG_')+str(current.pid)
  if os.path.isfile(file_name) :
    with open(file_name,'a') as F:
      F.write("Q-point: "+str(nbqpt)+" with wtq ="+str(wtq)+" and reduced coord."+str(EIGR2D.iqpt)+"\n")
  else:
    with open(file_name,'w') as F:
      F.write("Q-point: "+str(nbqpt)+" with wtq ="+str(wtq)+" and reduced coord."+str(EIGR2D.iqpt)+"\n")


# Find phonon freq and eigendisplacement from _DDB
  omega,eigvect,gprimd=compute_dynmat(DDB)

# Compute the displacement = eigenvectors of the DDB. 
# Due to metric problem in reduce coordinate we have to work in cartesian
# but then go back to reduce because our EIGR2D matrix elements are in reduced coord.
  fan_corr =  zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex)
  ddw_corr = zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex)
  fan_add = N.array(zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex))
  ddw_add = N.array(zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex))

  bose = get_bose(EIGR2D.natom,omega,temp_info)
  # bose (imode, itemp)

# Get reduced displacement (scaled with frequency)
  displ_red_FAN2,displ_red_DDW2 = get_reduced_displ(EIGR2D.natom,eigvect,omega,gprimd)
  # displ_red(mode,atom1,atom2,dir1,dir2)

# Einstein sum make the vector matrix multiplication ont the correct indices
  fan_corrQ = N.einsum('iojklmn,plnkm->pijo',EIGR2D.EIG2D_bis,displ_red_FAN2)
  ddw_corrQ = N.einsum('iojklmn,plnkm->pijo',ddw_save,displ_red_DDW2)
  # fan_corrQ(mode,kpt,band,spin)

  # Sum over the modes with bose + reshape to (itemp,ispin,ikpt,iband)
  fan_corr = N.einsum('ijkl,im->mljk',fan_corrQ,2*bose+1.0)
  ddw_corr = N.einsum('ijkl,im->mljk',ddw_corrQ,2*bose+1.0)

  omegatmp = omega[:].real # imode
  if type == 3:
    imag_fan_add = 0.0
  elif type == 1 or type == 2:
    print("Now compute active space ...")

#   Now compute active space
    # sum over atom1,dir1
    temp = N.einsum('iqjklm,nlokp->ijmnpoq',GKK,displ_red_FAN2)
    fan_addQ = N.einsum('ijklmnq,iqjmnk->ijklq',temp,N.conjugate(GKK))
    # fan_addQ(nkpt,nband,nband,imode,ispin)
    temp = N.einsum('iqjklm,nlokp->ijmnpoq',ddw_save2,displ_red_DDW2)
    ddw_addQ = N.einsum('ijklmnq,iqjmnk->ijklq',temp,N.conjugate(ddw_save2))
    # fan_addQ(nkpt,nband,nband,imode,ispin)

    occtmp = EIGR2D.nsppol*EIGR2D.occ[:,:,:]/2 # jband # should be 1 !
    delta_E_ddw = N.einsum('lij,k->lijk',eig0[:,:,:].real,N.ones(EIGR2D.nband)) - \
              N.einsum('lij,k->likj',eig0[:,:,:].real,N.ones(EIGR2D.nband)) - \
              N.einsum('i,ljk->ljik',N.ones((EIGR2D.nband)),(2*occtmp-1))*smearing*1j # spin,ikpt,iband,jband

    ddw_tmp = N.einsum('ijkln,lm->mijkn',ddw_addQ,2*bose+1.0) # itemp,ikpt,iband,jband,ispin
    ddw_add = N.einsum('ijklm,mjkl->imjk',ddw_tmp,1.0/delta_E_ddw) # temp,spin,ikpt,iband
    delta_E = N.einsum('lij,k->lijk',eig0[:,:,:].real,N.ones(EIGR2D.nband)) - \
              N.einsum('lij,k->likj',eigq.EIG[:,:,:].real,N.ones(EIGR2D.nband)) # spin,ikpt,iband,jband
    delta_E_sm = N.einsum('i,ljk->ljik',N.ones((EIGR2D.nband)),(2*occtmp-1))*smearing*1j # spin,ikpt,iband,jband
    num1 = N.einsum('ij,mkl->mkijl',bose,N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband))) +1.0 \
          - N.einsum('ij,mkl->mkijl',N.ones((3*EIGR2D.natom,ntemp)),occtmp) # spin,k,mod,temp,band # bef was (imode,tmp,band)
    deno1 = N.einsum('mijk,l->mijkl',delta_E,N.ones(3*EIGR2D.natom),dtype=N.complex)

    if type==1: # dynamic
      deno1 -= N.einsum('mijk,l->mijkl',N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nband)),omegatmp) #spin,ikpt,iband,jband,imode

    imag_part1 = N.pi*gaussian(deno1,0.0,gaussian_smearing)
    #imag_part1 = N.pi*fermidirac(deno1,0.0,gaussian_smearing)
    #imag_part1 = N.pi*lorentzian(deno1,0.0,gaussian_smearing)
    #imag_part1 = gaussian_smearing/(deno1*deno1 + gaussian_smearing*gaussian_smearing)
    deno1 += N.einsum('mijk,l->mijkl',delta_E_sm,N.ones(3*EIGR2D.natom),dtype=N.complex)

    div1 = N.einsum('ijklm,ijnmk->iklmjn',num1,1.0/deno1) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)

    num2 = N.einsum('ij,mkl->mkijl',bose,N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband))) \
          + N.einsum('ij,mkl->mkijl',N.ones((3*EIGR2D.natom,ntemp)),occtmp) #imode,tmp,jband
    deno2 = N.einsum('mijk,l->mijkl',delta_E,N.ones((3*EIGR2D.natom),dtype=N.complex)) 

    if type==1: # dynamic
      deno2 += N.einsum('mijk,l->mijkl',N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nband)),omegatmp) #spin,ikpt,iband,jband,imode
    
    imag_part2 = N.pi*gaussian(deno2,0.0,gaussian_smearing)
    #imag_part2 = N.pi*fermidirac(deno2,0.0,gaussian_smearing)
    #imag_part2 = N.pi*lorentzian(deno2,0.0,gaussian_smearing)
    #imag_part2 = gaussian_smearing/(deno2*deno2 + gaussian_smearing*gaussian_smearing)
    deno2 -= N.einsum('mijk,l->mijkl',delta_E_sm,N.ones(3*EIGR2D.natom),dtype=N.complex)

    div2 = N.einsum('ijklm,ijnmk->iklmjn',num2,1.0/deno2) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)

    fan_add = N.einsum('ijklq,qlmkij->mqij',fan_addQ,div1+div2) # (k,iband,jband,imod,ispin) * (spin,imod,tmp,jband,ikpt,iband) => (temp,ispin,ikpt,iband)


    imag_div1 = N.einsum('ijklm,ijnmk->iklmjn',num1,imag_part1) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)
    imag_div2 = N.einsum('ijklm,ijnmk->iklmjn',num2,imag_part2) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)
    imag_fan_add = N.einsum('ijklq,qlmkij->mqij',fan_addQ,imag_div1+imag_div2) # (k,iband,jband,imod,ispin) * (spin,imod,tmp,jband,ikpt,iband) => (temp,ispin,ikpt,iband)

    print("Now compute generalized g2F Eliashberg electron-phonon spectral function ...")

    fan_tmp = N.einsum('ijklm->mijl',fan_addQ) # (ispin,ikpt, iband, imode)
    ddw_tmp = N.einsum('ijklm->mijl',ddw_addQ) # (ispin,ikpt, iband, imode)
    g_kk = fan_tmp - ddw_tmp

    # Eliashberg function 
    a2F =  zeros((len(energy),EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband),dtype=complex)
    for ifreq,freq in enumerate(energy):
      for imode in N.arange(3*EIGR2D.natom):
        a2F[ifreq,:,:,:] += g_kk[:,:,:,imode]*gaussian(freq,omegatmp[imode],gaussian_smearing)
    fan_corr += fan_add
    ddw_corr += ddw_add

  # PDOS
  PDOS = zeros((len(energy)),dtype=complex)
  ii = 0
  for ifreq,freq in enumerate(energy):
    for imode in N.arange(3*EIGR2D.natom):
      PDOS[ifreq] += gaussian(freq,omegatmp[imode],gaussian_smearing)
  
  # From the equations ddw_corr has no physical imaginary part
  ddw_corr.imag = 0.0
  
  eigen_corr = (fan_corr[:,:,:,:] - ddw_corr[:,:,:,:])*wtq

  total_corr[0,:,:,:,:] = eigen_corr[:,:,:,:]
  total_corr[1,:,:,:,:] = fan_corr[:,:,:,:]*wtq
  total_corr[2,:,:,:,:] = ddw_corr[:,:,:,:]*wtq
  total_corr[3,:,:,:,:] = imag_fan_add*wtq
  total_corr[4:len(energy)+4,0,0,0,0] = PDOS

  if type == 1 or type == 2:
    total_corr[4+len(energy):len(energy)*2+4,0,:,:,:] = a2F

  total_corr = make_average(EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband,degen,total_corr,temp=True)

  return total_corr

#########################################################################################################
# Compute total weigth
def compute_wtq(arguments,type):
  if type == 1 or type == 2:
    nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files,GKK_files = arguments
  elif type == 3:
    nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files = arguments

  EIGR2D = system(directory='.',filename=EIGR2D_files)
# If the calculation is on a Homogenous q-point mesh
# retreve the weight of the q-point
  if (wtq == 0):
    wtq = EIGR2D.wtq
    wtq = wtq[0]
  return wtq


class zpm:
  total_corr = None
  def __init__(self,arguments,ddw_save,ddw_save2,nb_cpus,type,temp_info,smearing,eig0,degen,energy,gaussian_smearing):
    # Parallelize the work over cpus
    pool = multiprocessing.Pool(processes=nb_cpus)
    partial_compute_wtq = partial(compute_wtq,type=type)
    total = pool.imap(partial_compute_wtq,arguments)
    self.total_wtq = sum(total)

    if (type == 1 or type == 2 or type == 3):
      partial_dynamic_zpm_temp =  partial(dynamic_zpm_temp,ddw_save=ddw_save,ddw_save2=ddw_save2,type=type,temp_info=temp_info,\
                                   smearing=smearing,eig0=eig0,degen=degen,energy=energy,gaussian_smearing=gaussian_smearing)
      total = pool.imap(partial_dynamic_zpm_temp,arguments)
      self.total_corr = sum(total)

    pool.close()
    pool.join()