1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
# Author: S. Ponc\'e + Y. Gillet
# Date: 30/04/2013 -- 11/09/2014 -- 07/08/2015 -- 21/12/2020
# Version 1.5
# Classes needed for the temperature_final.py script
# 2015 : Spin + Lifetime coding
# 2020 : Port to python3
#from __future__ import division, print_function
import numpy as N
from numpy import zeros
from numpy import complex, float
import itertools as Iter
from functools import partial
import multiprocessing
import netCDF4 as nc
import sys
import os
# Variables
tol6 = 1E-6
tol8 = 1E-8
Ha2eV = 27.21138386
kb_HaK = 3.1668154267112283e-06
###########
# CLASSES #
###########
class system:
natom = 0
ntypat = 0
nkpt = 0
kpt = None
Kptns = None
EIG = None
nband = 0
acell = None
occ = None
amu = None
rprim = N.empty((3, 3))
iqpt = None
IFC = None
filename = None
filefullpath = None
def __init__(self,directory=None,filename=None):
if filename == None:return
if directory == None:directory='.'
self.filename = filename
self.filefullpath = '%s/%s' %(directory,filename)
if self.filefullpath[-4:] == '_DDB':
self.DDB_file_open(self.filefullpath)
if self.filefullpath[-10:] == '_EIGR2D.nc' or self.filefullpath[-10:] == '_EIGI2D.nc':
self.EIG2Dnc_file_open(self.filefullpath)
if self.filefullpath[-7:] == '_EIG.nc':
self.EIG_file_open(self.filefullpath)
if self.filefullpath[-4:] == '_EIG':
raise Exception('Please provide a netCDF _EIG.nc file!\n\
This is mandatory for good accuracy.' )
if self.filefullpath[-7:] == '_GKK.nc':
self.GKKnc_file_open(self.filefullpath)
if self.filefullpath[-6:] == '_EP.nc':
self.EP_file_open(self.filefullpath)
# Read _EP.nc file
def EP_file_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
raise Exception('The file "%s" does not exists!' %filefullpath)
root = nc.Dataset(filefullpath,'r')
self.natom = len(root.dimensions['number_of_atoms'])
self.nkpt = len(root.dimensions['number_of_kpoints'])
self.nband = len(root.dimensions['max_number_of_states'])
self.ntemp = len(root.dimensions['number_of_temperature'])
self.nsppol = len(root.dimensions['number_of_spins'])
self.nbQ = len(root.dimensions['number_of_qpoints'])
self.temp = root.variables['temperature'][:]
self.occ = root.variables['occupations'][:,:,:] # number_of_spins, number_of_kpoints, max_number_of_states
self.kpt = root.variables['reduced_coordinates_of_kpoints'][:,:]
self.eigenvalues = root.variables['eigenvalues'][:,:,:] #number_of_spins, number_of_kpoints, max_number_of_states
self.rprimd = root.variables['primitive_vectors'][:,:]
self.zpm = root.variables['zero_point_motion'][:,:,:,:,:] # nsppol, number_of_temperature,
# number_of_kpoints, max_number_of_states, cplex
root.close()
# Read _EIG.nc file
def EIG_file_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
raise Exception('The file "%s" does not exists!' %filefullpath)
root = nc.Dataset(filefullpath,'r')
self.EIG = root.variables['Eigenvalues'][:,:,:] # nsppol,nkpt,nband
self.Kptns = root.variables['Kptns'][:,:]
NBandK = root.variables['NBandK'][:]
self.nband = N.int(NBandK[0,0])
root.close()
# Open the Fan.nc file and read it
def GKKnc_file_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
raise Exception('The file "%s" does not exists!' %filefullpath)
root = nc.Dataset(filefullpath,'r')
self.natom = len(root.dimensions['number_of_atoms'])
self.nkpt = len(root.dimensions['number_of_kpoints'])
self.nband = len(root.dimensions['max_number_of_states'])
self.nsppol = len(root.dimensions['number_of_spins'])
self.occ = root.variables['occupations'][:,:,:] # number_of_spins, number_of_kpoints, max_number_of_states
GKKtmp = root.variables['second_derivative_eigenenergies_actif'][:,:,:,:,:] #max_number_of_states,number_of_atoms,
# number_of_cartesian_directions, number_of_kpoints, product_mband_nsppol*2
GKKtmp2 = N.einsum('ijkno->nokji', GKKtmp)
#GKKtmp2(nkpt,nband*nsppol*2,3,natom,nband)
GKKtmp3 = GKKtmp2[:, ::2, ...] # Slice the even numbers
GKKtmp4 = GKKtmp2[:, 1::2, ...] # Slice the odd numbers
self.GKK = 1j*GKKtmp4
self.GKK += GKKtmp3
self.GKK_bis = N.reshape(self.GKK,(self.nkpt,self.nsppol,self.nband,3,self.natom,self.nband))
self.eigenvalues = root.variables['eigenvalues'][:,:,:] #number_of_spins, number_of_kpoints, max_number_of_states
self.kpt = root.variables['reduced_coordinates_of_kpoints'][:,:]
self.iqpt = root.variables['current_q_point'][:]
self.wtq = root.variables['current_q_point_weight'][:]
self.rprimd = root.variables['primitive_vectors'][:,:]
root.close()
# Open the EIG2D.nc file and read it
def EIG2Dnc_file_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
raise Exception('The file "%s" does not exists!' %filefullpath)
root = nc.Dataset(filefullpath,'r')
self.natom = len(root.dimensions['number_of_atoms'])
self.nkpt = len(root.dimensions['number_of_kpoints'])
self.nband = len(root.dimensions['max_number_of_states'])
self.nsppol = len(root.dimensions['number_of_spins'])
self.occ = root.variables['occupations'][:,:,:] # number_of_spins, number_of_kpoints, max_number_of_states
EIG2Dtmp = root.variables['second_derivative_eigenenergies'][:,:,:,:,:,:,:] #number_of_atoms,
# number_of_cartesian_directions, number_of_atoms, number_of_cartesian_directions,
# number_of_kpoints, product_mband_nsppol, cplex
EIG2Dtmp2 = N.einsum('ijklmno->mnlkjio', EIG2Dtmp)
#EIG2Dtmp2(nkpt,mband*nsppol,3,natom,3,natom,2)
self.EIG2D = 1j*EIG2Dtmp2[...,1]
self.EIG2D += EIG2Dtmp2[...,0]
#EIG2D(nkpt,mband*nsppol,3,natom,3,natom)
self.EIG2D_bis = N.reshape(self.EIG2D,(self.nkpt,self.nsppol,self.nband,3,self.natom,3,self.natom))
#EIG2D_bis(nkpt,nband,nsppol,3,natom,3,natom)
self.eigenvalues = root.variables['eigenvalues'][:,:,:] #number_of_spins, number_of_kpoints, max_number_of_states
self.kpt = root.variables['reduced_coordinates_of_kpoints'][:,:]
self.iqpt = root.variables['current_q_point'][:]
self.wtq = root.variables['current_q_point_weight'][:]
self.rprimd = root.variables['primitive_vectors'][:,:]
root.close()
# Open the DDB file and read it
def DDB_file_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
raise Exception('The file "%s" does not exists!' %filefullpath)
with open(filefullpath,'r') as DDB:
Flag = 0
Flag2 = False
Flag3 = False
ikpt = 0
typatdone = 0
for line in DDB:
if line.find('natom') > -1:
self.natom = N.int(line.split()[1])
if line.find('nkpt') > -1:
self.nkpt = N.int(line.split()[1])
self.kpt = zeros((self.nkpt,3))
if line.find('ntypat') > -1:
self.ntypat = N.int(line.split()[1])
if line.find('nband') > -1:
self.nband = N.int(line.split()[1])
if line.find('acell') > -1:
line = line.replace('D','E')
tmp = line.split()
self.acell = [N.float(tmp[1]),N.float(tmp[2]),N.float(tmp[3])]
if Flag2:
line = line.replace('D','E')
for ii in N.arange(3,self.ntypat):
self.amu[ii] = N.float(line.split()[ii-3])
Flag2 = False
if line.find('amu') > -1:
line = line.replace('D','E')
self.amu = zeros((self.ntypat))
if self.ntypat > 3:
for ii in N.arange(3):
self.amu[ii] = N.float(line.split()[ii+1])
Flag2 = True
else:
for ii in N.arange(self.ntypat):
self.amu[ii] = N.float(line.split()[ii+1])
if line.find(' kpt ') > -1:
line = line.replace('D','E')
tmp = line.split()
self.kpt[0,0:3] = [float(tmp[1]),float(tmp[2]),float(tmp[3])]
ikpt = 1
continue
if ikpt < self.nkpt and ikpt > 0:
line = line.replace('D','E')
tmp = line.split()
self.kpt[ikpt,0:3] = [float(tmp[0]),float(tmp[1]),float(tmp[2])]
ikpt += 1
continue
if Flag == 2:
line = line.replace('D','E')
tmp = line.split()
self.rprim[2,0:3] = [float(tmp[0]),float(tmp[1]),float(tmp[2])]
Flag = 0
if Flag == 1:
line = line.replace('D','E')
tmp = line.split()
self.rprim[1,0:3] = [float(tmp[0]),float(tmp[1]),float(tmp[2])]
Flag = 2
if line.find('rprim') > -1:
line = line.replace('D','E')
tmp = line.split()
self.rprim[0,0:3] = [float(tmp[1]),float(tmp[2]),float(tmp[3])]
Flag = 1
if Flag3:
line = line.replace('D','E')
if (self.natom-typatdone)*1.0/12 < 1.001:
for ii in N.arange(self.natom-typatdone):
self.typat[typatdone+ii] = N.float(line.split()[ii])
Flag3 = False
else:
for ii in N.arange(12):
self.typat[typatdone+ii] = N.float(line.split()[ii])
typatdone += 12
if line.find(' typat') > -1:
self.typat = zeros((self.natom))
if self.natom > 12:
for ii in N.arange(12):
self.typat[ii] = N.float(line.split()[ii+1])
Flag3 = True
typatdone = 12
else:
for ii in N.arange(self.natom):
self.typat[ii] = N.float(line.split()[ii+1])
# Read the actual d2E/dRdR matrix
if Flag == 3:
line = line.replace('D','E')
tmp = line.split()
self.IFC[int(tmp[0])-1,int(tmp[1])-1,int(tmp[2])-1,int(tmp[3])-1] = \
complex(float(tmp[4]),float(tmp[5]))
# Read the current Q-point
if line.find('qpt') > -1:
line = line.replace('D','E')
tmp = line.split()
self.iqpt = [N.float(tmp[1]),N.float(tmp[2]),N.float(tmp[3])]
Flag = 3
self.IFC = zeros((3,self.natom,3,self.natom),dtype=complex)
#################################################
# Usefull definition to avoid code duplications #
#################################################
def compute_dynmat(DDB):
# Retrive the amu for each atom
amu = zeros(DDB.natom)
for ii in N.arange(DDB.natom):
jj = DDB.typat[ii].astype(int)
amu[ii] = DDB.amu[jj-1]
# Calcul of gprimd from rprimd
rprimd = DDB.rprim*DDB.acell
gprimd = N.linalg.inv(N.matrix(rprimd))
# Transform from 2nd-order matrix (non-cartesian coordinates,
# masses not included, asr not included ) from DDB to
# dynamical matrix, in cartesian coordinates, asr not imposed.
IFC_cart = zeros((3,DDB.natom,3,DDB.natom),dtype=complex)
for ii in N.arange(DDB.natom):
for jj in N.arange(DDB.natom):
for dir1 in N.arange(3):
for dir2 in N.arange(3):
for dir3 in N.arange(3):
for dir4 in N.arange(3):
IFC_cart[dir1,ii,dir2,jj] += gprimd[dir1,dir3]*DDB.IFC[dir3,ii,dir4,jj] \
*gprimd[dir2,dir4]
# Reduce the 4 dimensional IFC_cart matrice to 2 dimensional Dynamical matrice.
ipert1 = 0
Dyn_mat = zeros((3*DDB.natom,3*DDB.natom),dtype=complex)
while ipert1 < 3*DDB.natom:
for ii in N.arange(DDB.natom):
for dir1 in N.arange(3):
ipert2 = 0
while ipert2 < 3*DDB.natom:
for jj in N.arange(DDB.natom):
for dir2 in N.arange(3):
Dyn_mat[ipert1,ipert2] = IFC_cart[dir1,ii,dir2,jj]*(5.4857990965007152E-4)/ \
N.sqrt(amu[ii]*amu[jj])
ipert2 += 1
ipert1 += 1
# Hermitianize the dynamical matrix
dynmat = N.matrix(Dyn_mat)
dynmat = 0.5*(dynmat + dynmat.transpose().conjugate())
# Solve the eigenvalue problem with linear algebra (Diagonalize the matrix)
[eigval,eigvect]=N.linalg.eigh(Dyn_mat)
# Orthonormality relation
ipert = 0
for ii in N.arange(DDB.natom):
for dir1 in N.arange(3):
eigvect[ipert] = (eigvect[ipert])*N.sqrt(5.4857990965007152E-4/amu[ii])
ipert += 1
kk = 0
for jj in eigval:
if jj < 0.0:
print("WARNING: An eigenvalue is negative with value: ",jj," ... but proceed with value 0.0")
eigval[kk] = 0.0
kk += 1
else:
kk += 1
omega = N.sqrt(eigval) #*5.4857990965007152E-4)
# print "omega",omega
# The acoustic phonon at Gamma should NOT contribute because they should be zero.
# Moreover with the translational invariance the ZPM will be 0 anyway for these
# modes but the FAN and DDW will have a non physical value. We should therefore
# neglect these values.
# if N.allclose(DDB.iqpt,[0.0,0.0,0.0]) == True:
# omega[0] = 0.0
# omega[1] = 0.0
# omega[2] = 0.0
return omega,eigvect,gprimd
# -----------------------------------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------------------------
def get_reduced_displ(natom,eigvect,omega,gprimd):
displ_FAN = zeros((3,3),dtype=complex)
displ_DDW = zeros((3,3),dtype=complex)
displ_red_FAN2 = zeros((3*natom,natom,natom,3,3),dtype=complex)
displ_red_DDW2 = zeros((3*natom,natom,natom,3,3),dtype=complex)
for imode in N.arange(3*natom): #Loop on perturbation (6 for 2 atoms)
if omega[imode].real > tol6:
for iatom1 in N.arange(natom):
for iatom2 in N.arange(natom):
for idir1 in N.arange(0,3):
for idir2 in N.arange(0,3):
displ_FAN[idir1,idir2] = eigvect[3*iatom2+idir2,imode].conj()\
*eigvect[3*iatom1+idir1,imode]/(2.0*omega[imode].real)
displ_DDW[idir1,idir2] = (eigvect[3*iatom2+idir2,imode].conj()\
*eigvect[3*iatom2+idir1,imode]+eigvect[3*iatom1+idir2,imode].conj()\
*eigvect[3*iatom1+idir1,imode])/(4.0*omega[imode].real)
# Now switch to reduced coordinates in 2 steps (more efficient)
tmp_displ_FAN = zeros((3,3),dtype=complex)
tmp_displ_DDW = zeros((3,3),dtype=complex)
for idir1 in N.arange(3):
for idir2 in N.arange(3):
tmp_displ_FAN[:,idir1] = tmp_displ_FAN[:,idir1]+displ_FAN[:,idir2]*gprimd[idir2,idir1]
tmp_displ_DDW[:,idir1] = tmp_displ_DDW[:,idir1]+displ_DDW[:,idir2]*gprimd[idir2,idir1]
displ_red_FAN = zeros((3,3),dtype=complex)
displ_red_DDW = zeros((3,3),dtype=complex)
for idir1 in N.arange(3):
for idir2 in N.arange(3):
displ_red_FAN[idir1,:] = displ_red_FAN[idir1,:] + tmp_displ_FAN[idir2,:]*gprimd[idir2,idir1]
displ_red_DDW[idir1,:] = displ_red_DDW[idir1,:] + tmp_displ_DDW[idir2,:]*gprimd[idir2,idir1]
displ_red_FAN2[imode,iatom1,iatom2,:,:] = displ_red_FAN[:,:]
displ_red_DDW2[imode,iatom1,iatom2,:,:] = displ_red_DDW[:,:]
return displ_red_FAN2,displ_red_DDW2
# ----------------------------------------------------------------------------------------------------
# -----------------------------------------------------------------------------------------------------------
def make_average(nsppol,nkpt,nband,degen,total_corr,temp=False):
if temp:
for ispin in N.arange(nsppol):
for ikpt in N.arange(nkpt):
count = 0
iband = 0
while iband < nband:
if iband < nband-2:
if ((degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]) and (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+2])):
total_corr[:,:,ispin,ikpt,iband] = (total_corr[:,:,ispin,ikpt,iband]+total_corr[:,:,ispin,ikpt,iband+1]+total_corr[:,:,ispin,ikpt,iband+2])/3
total_corr[:,:,ispin,ikpt,iband+1] = total_corr[:,:,ispin,ikpt,iband]
total_corr[:,:,ispin,ikpt,iband+2] = total_corr[:,:,ispin,ikpt,iband]
iband += 3
continue
if iband < nband-1:
if (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]):
total_corr[:,:,ispin,ikpt,iband] = (total_corr[:,:,ispin,ikpt,iband]+total_corr[:,:,ispin,ikpt,iband+1])/2
total_corr[:,:,ispin,ikpt,iband+1]=total_corr[:,:,ispin,ikpt,iband]
iband +=2
continue
iband += 1
else:
for ispin in N.arange(nsppol):
for ikpt in N.arange(nkpt):
count = 0
iband = 0
while iband < nband:
if iband < nband-2:
if ((degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]) and (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+2])):
total_corr[:,ispin,ikpt,iband] = (total_corr[:,ispin,ikpt,iband]+total_corr[:,ispin,ikpt,iband+1]+\
total_corr[:,ispin,ikpt,iband+2])/3
total_corr[:,ispin,ikpt,iband+1] = total_corr[:,ispin,ikpt,iband]
total_corr[:,ispin,ikpt,iband+2] = total_corr[:,ispin,ikpt,iband]
iband += 3
continue
if iband < nband-1:
if (degen[ispin,ikpt,iband] == degen[ispin,ikpt,iband+1]):
total_corr[:,ispin,ikpt,iband] = (total_corr[:,ispin,ikpt,iband]+total_corr[:,ispin,ikpt,iband+1])/2
total_corr[:,ispin,ikpt,iband+1]=total_corr[:,ispin,ikpt,iband]
iband +=2
continue
iband += 1
return total_corr
# ---------------------------------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------------------------------
def get_bose(natom,omega,temp_info):
bose = N.array(zeros((3*natom,len(temp_info))))
for imode in N.arange(3*natom): #Loop on perturbation (6 for 2 atoms)
if omega[imode].real > tol6:
tt = 0
for T in temp_info:
if T < tol6:
bose[imode,tt] = 0.0
else:
bose[imode,tt] = 1.0/(N.exp(omega[imode].real/(kb_HaK*T))-1)
tt += 1
#print bose[:,0]
return bose
# ---------------------------------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------------------------------
def gaussian(ifreq,omegatmp,gaussian_smearing):
x = (ifreq - omegatmp)/gaussian_smearing
gaussian = 1.0/(N.sqrt(N.pi)) * (1.0/gaussian_smearing) * N.exp(-(x**2))
return gaussian
def fermidirac(freq,center,smearing):
x = (freq-center)/smearing
value = 0.25/smearing/(N.cosh(x/2.0))**2
return value
def lorentzian(freq,center,smearing):
x = (freq-center)/smearing
value = 1.0/(N.pi)/smearing/(x**2+1)
return value
#####################
# Compute temp. dep #
#####################
# Compute the dynamical ZPR with temperature dependence
def dynamic_zpm_temp(arguments,ddw_save,ddw_save2,type,temp_info,smearing,eig0,degen,energy,gaussian_smearing):
if type == 1 or type == 2:
nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files,GKK_files = arguments
GKKterm = system(directory='.',filename=GKK_files)
GKK = GKKterm.GKK_bis
elif type == 3:
nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files = arguments
DDB = system(directory='.',filename=DDB_files)
EIGR2D = system(directory='.',filename=EIGR2D_files)
ntemp = len(temp_info)
if type == 1 or type == 2:
total_corr = zeros((4+2*len(energy),ntemp,EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband),dtype=complex)
elif type == 3:
total_corr = zeros((4+len(energy),ntemp,EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband),dtype=complex)
eigq = system(directory='.',filename=eigq_files)
# If the calculation is on a Homogenous q-point mesh
# retreve the weight of the q-point
if (wtq == 0):
wtq = EIGR2D.wtq
wtq = wtq[0]
# Current Q-point calculated
print("Q-point: ",nbqpt," with wtq =",wtq," and reduced coord.",EIGR2D.iqpt)
current = multiprocessing.current_process()
file_name = str('PYLOG_')+str(current.pid)
if os.path.isfile(file_name) :
with open(file_name,'a') as F:
F.write("Q-point: "+str(nbqpt)+" with wtq ="+str(wtq)+" and reduced coord."+str(EIGR2D.iqpt)+"\n")
else:
with open(file_name,'w') as F:
F.write("Q-point: "+str(nbqpt)+" with wtq ="+str(wtq)+" and reduced coord."+str(EIGR2D.iqpt)+"\n")
# Find phonon freq and eigendisplacement from _DDB
omega,eigvect,gprimd=compute_dynmat(DDB)
# Compute the displacement = eigenvectors of the DDB.
# Due to metric problem in reduce coordinate we have to work in cartesian
# but then go back to reduce because our EIGR2D matrix elements are in reduced coord.
fan_corr = zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex)
ddw_corr = zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex)
fan_add = N.array(zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex))
ddw_add = N.array(zeros((ntemp,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nsppol),dtype=complex))
bose = get_bose(EIGR2D.natom,omega,temp_info)
# bose (imode, itemp)
# Get reduced displacement (scaled with frequency)
displ_red_FAN2,displ_red_DDW2 = get_reduced_displ(EIGR2D.natom,eigvect,omega,gprimd)
# displ_red(mode,atom1,atom2,dir1,dir2)
# Einstein sum make the vector matrix multiplication ont the correct indices
fan_corrQ = N.einsum('iojklmn,plnkm->pijo',EIGR2D.EIG2D_bis,displ_red_FAN2)
ddw_corrQ = N.einsum('iojklmn,plnkm->pijo',ddw_save,displ_red_DDW2)
# fan_corrQ(mode,kpt,band,spin)
# Sum over the modes with bose + reshape to (itemp,ispin,ikpt,iband)
fan_corr = N.einsum('ijkl,im->mljk',fan_corrQ,2*bose+1.0)
ddw_corr = N.einsum('ijkl,im->mljk',ddw_corrQ,2*bose+1.0)
omegatmp = omega[:].real # imode
if type == 3:
imag_fan_add = 0.0
elif type == 1 or type == 2:
print("Now compute active space ...")
# Now compute active space
# sum over atom1,dir1
temp = N.einsum('iqjklm,nlokp->ijmnpoq',GKK,displ_red_FAN2)
fan_addQ = N.einsum('ijklmnq,iqjmnk->ijklq',temp,N.conjugate(GKK))
# fan_addQ(nkpt,nband,nband,imode,ispin)
temp = N.einsum('iqjklm,nlokp->ijmnpoq',ddw_save2,displ_red_DDW2)
ddw_addQ = N.einsum('ijklmnq,iqjmnk->ijklq',temp,N.conjugate(ddw_save2))
# fan_addQ(nkpt,nband,nband,imode,ispin)
occtmp = EIGR2D.nsppol*EIGR2D.occ[:,:,:]/2 # jband # should be 1 !
delta_E_ddw = N.einsum('lij,k->lijk',eig0[:,:,:].real,N.ones(EIGR2D.nband)) - \
N.einsum('lij,k->likj',eig0[:,:,:].real,N.ones(EIGR2D.nband)) - \
N.einsum('i,ljk->ljik',N.ones((EIGR2D.nband)),(2*occtmp-1))*smearing*1j # spin,ikpt,iband,jband
ddw_tmp = N.einsum('ijkln,lm->mijkn',ddw_addQ,2*bose+1.0) # itemp,ikpt,iband,jband,ispin
ddw_add = N.einsum('ijklm,mjkl->imjk',ddw_tmp,1.0/delta_E_ddw) # temp,spin,ikpt,iband
delta_E = N.einsum('lij,k->lijk',eig0[:,:,:].real,N.ones(EIGR2D.nband)) - \
N.einsum('lij,k->likj',eigq.EIG[:,:,:].real,N.ones(EIGR2D.nband)) # spin,ikpt,iband,jband
delta_E_sm = N.einsum('i,ljk->ljik',N.ones((EIGR2D.nband)),(2*occtmp-1))*smearing*1j # spin,ikpt,iband,jband
num1 = N.einsum('ij,mkl->mkijl',bose,N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband))) +1.0 \
- N.einsum('ij,mkl->mkijl',N.ones((3*EIGR2D.natom,ntemp)),occtmp) # spin,k,mod,temp,band # bef was (imode,tmp,band)
deno1 = N.einsum('mijk,l->mijkl',delta_E,N.ones(3*EIGR2D.natom),dtype=N.complex)
if type==1: # dynamic
deno1 -= N.einsum('mijk,l->mijkl',N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nband)),omegatmp) #spin,ikpt,iband,jband,imode
imag_part1 = N.pi*gaussian(deno1,0.0,gaussian_smearing)
#imag_part1 = N.pi*fermidirac(deno1,0.0,gaussian_smearing)
#imag_part1 = N.pi*lorentzian(deno1,0.0,gaussian_smearing)
#imag_part1 = gaussian_smearing/(deno1*deno1 + gaussian_smearing*gaussian_smearing)
deno1 += N.einsum('mijk,l->mijkl',delta_E_sm,N.ones(3*EIGR2D.natom),dtype=N.complex)
div1 = N.einsum('ijklm,ijnmk->iklmjn',num1,1.0/deno1) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)
num2 = N.einsum('ij,mkl->mkijl',bose,N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband))) \
+ N.einsum('ij,mkl->mkijl',N.ones((3*EIGR2D.natom,ntemp)),occtmp) #imode,tmp,jband
deno2 = N.einsum('mijk,l->mijkl',delta_E,N.ones((3*EIGR2D.natom),dtype=N.complex))
if type==1: # dynamic
deno2 += N.einsum('mijk,l->mijkl',N.ones((EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband,EIGR2D.nband)),omegatmp) #spin,ikpt,iband,jband,imode
imag_part2 = N.pi*gaussian(deno2,0.0,gaussian_smearing)
#imag_part2 = N.pi*fermidirac(deno2,0.0,gaussian_smearing)
#imag_part2 = N.pi*lorentzian(deno2,0.0,gaussian_smearing)
#imag_part2 = gaussian_smearing/(deno2*deno2 + gaussian_smearing*gaussian_smearing)
deno2 -= N.einsum('mijk,l->mijkl',delta_E_sm,N.ones(3*EIGR2D.natom),dtype=N.complex)
div2 = N.einsum('ijklm,ijnmk->iklmjn',num2,1.0/deno2) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)
fan_add = N.einsum('ijklq,qlmkij->mqij',fan_addQ,div1+div2) # (k,iband,jband,imod,ispin) * (spin,imod,tmp,jband,ikpt,iband) => (temp,ispin,ikpt,iband)
imag_div1 = N.einsum('ijklm,ijnmk->iklmjn',num1,imag_part1) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)
imag_div2 = N.einsum('ijklm,ijnmk->iklmjn',num2,imag_part2) # (spin,k,mod,temp,jband)/(spin,ikpt,iband,jband,mode) => (ispin,imod,tmp,jband,ikpt,iband)
imag_fan_add = N.einsum('ijklq,qlmkij->mqij',fan_addQ,imag_div1+imag_div2) # (k,iband,jband,imod,ispin) * (spin,imod,tmp,jband,ikpt,iband) => (temp,ispin,ikpt,iband)
print("Now compute generalized g2F Eliashberg electron-phonon spectral function ...")
fan_tmp = N.einsum('ijklm->mijl',fan_addQ) # (ispin,ikpt, iband, imode)
ddw_tmp = N.einsum('ijklm->mijl',ddw_addQ) # (ispin,ikpt, iband, imode)
g_kk = fan_tmp - ddw_tmp
# Eliashberg function
a2F = zeros((len(energy),EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband),dtype=complex)
for ifreq,freq in enumerate(energy):
for imode in N.arange(3*EIGR2D.natom):
a2F[ifreq,:,:,:] += g_kk[:,:,:,imode]*gaussian(freq,omegatmp[imode],gaussian_smearing)
fan_corr += fan_add
ddw_corr += ddw_add
# PDOS
PDOS = zeros((len(energy)),dtype=complex)
ii = 0
for ifreq,freq in enumerate(energy):
for imode in N.arange(3*EIGR2D.natom):
PDOS[ifreq] += gaussian(freq,omegatmp[imode],gaussian_smearing)
# From the equations ddw_corr has no physical imaginary part
ddw_corr.imag = 0.0
eigen_corr = (fan_corr[:,:,:,:] - ddw_corr[:,:,:,:])*wtq
total_corr[0,:,:,:,:] = eigen_corr[:,:,:,:]
total_corr[1,:,:,:,:] = fan_corr[:,:,:,:]*wtq
total_corr[2,:,:,:,:] = ddw_corr[:,:,:,:]*wtq
total_corr[3,:,:,:,:] = imag_fan_add*wtq
total_corr[4:len(energy)+4,0,0,0,0] = PDOS
if type == 1 or type == 2:
total_corr[4+len(energy):len(energy)*2+4,0,:,:,:] = a2F
total_corr = make_average(EIGR2D.nsppol,EIGR2D.nkpt,EIGR2D.nband,degen,total_corr,temp=True)
return total_corr
#########################################################################################################
# Compute total weigth
def compute_wtq(arguments,type):
if type == 1 or type == 2:
nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files,GKK_files = arguments
elif type == 3:
nbqpt,wtq,eigq_files,DDB_files,EIGR2D_files = arguments
EIGR2D = system(directory='.',filename=EIGR2D_files)
# If the calculation is on a Homogenous q-point mesh
# retreve the weight of the q-point
if (wtq == 0):
wtq = EIGR2D.wtq
wtq = wtq[0]
return wtq
class zpm:
total_corr = None
def __init__(self,arguments,ddw_save,ddw_save2,nb_cpus,type,temp_info,smearing,eig0,degen,energy,gaussian_smearing):
# Parallelize the work over cpus
pool = multiprocessing.Pool(processes=nb_cpus)
partial_compute_wtq = partial(compute_wtq,type=type)
total = pool.imap(partial_compute_wtq,arguments)
self.total_wtq = sum(total)
if (type == 1 or type == 2 or type == 3):
partial_dynamic_zpm_temp = partial(dynamic_zpm_temp,ddw_save=ddw_save,ddw_save2=ddw_save2,type=type,temp_info=temp_info,\
smearing=smearing,eig0=eig0,degen=degen,energy=energy,gaussian_smearing=gaussian_smearing)
total = pool.imap(partial_dynamic_zpm_temp,arguments)
self.total_corr = sum(total)
pool.close()
pool.join()
|