File: spectral_func.py

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (304 lines) | stat: -rwxr-xr-x 11,005 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Author: Samuel Ponc\'e
# Date: 30/04/2013
# Script to compute the spectral function

import sys
import os
from rf_mods import system
try:
  import numpy as N
except ImportError:
  import warnings
  warnings.warn("The numpy module is missing!")
  raise
try:
  import netCDF4 as nc
except ImportError:
  import warnings
  warnings.warn("The netCDF4 module is missing!")
  raise

#import matplotlib.pyplot as plt

#############
# Constants #
#############
# If you want to hardcode the weight of the k-points you can do it here:
# wtq = [0.00, 0.125, 0.5,0.375]

tol6 = 1E-6
tol8 = 1E-8
Ha2eV = 27.21138386
kb_HaK = 3.1668154267112283e-06

# Interaction with the user
print '\n################################################'
print '# Spectral function of the dynamical self-energy #'
print '##################################################'
print '\nThis script compute the zero-point motion and the temperature dependence \n\
of eigenenergies due to electron-phonon interaction. This script can \n\
only compute Q-points with the same weight. If you want symmetry you must hack the script.\n\
WARNING: The first Q-point MUST be the Gamma point\n'

# Define the output file name
user_input = raw_input('Enter name of the output file\n')
output = user_input

# Get the value of the smearing parameter (in eV)
user_input = raw_input('Enter value of the smearing parameter (in eV)\n')
smearing = N.float(user_input)
smearing = smearing/Ha2eV

# Frequency range?
user_input = raw_input('What is the range of frequencies you want to compute your spectral function upon (in eV)\n\
  [start end steps]. e.g. -15 10 0.5 for an energy step every 0.5 eV between -15 eV and 10 eV. \n')
freq = N.arange(N.float(user_input.split()[0]),N.float(user_input.split()[1]),N.float(user_input.split()[2]))
freq = freq/Ha2eV # From eV to Ha

# Temperature
user_input = raw_input('Enter the temperature for the spectral function A_nk(omega,T) [in K]\n')
temperature = N.float(user_input)

# Band index
user_input = raw_input('Enter the band index for the spectral function A_nk(omega,T)\n')
try:
  band = N.int(user_input)
except ValueError:
  raise Exception('The value you enter is not an integer!')

# Get the nb of random Q-points from user 
user_input = raw_input('Enter the number of random Q-points you have\n')
try:
  nbQ = int(user_input)
except ValueError:
  raise Exception('The value you enter is not an integer!')

# Get the path of the DDB files from user
user_input = raw_input('Enter the name of the %s DDB files separated by a space\n' %nbQ)
if len(user_input.split()) != nbQ:
  raise Exception("You sould provide %s DDB files" %nbQ)
else:
  DDB_files = user_input.split()

# Test if the first file is at the Gamma point
DDBtmp = system(directory='.',filename=DDB_files[0])
if N.allclose(DDBtmp.iqpt,[0.0,0.0,0.0]) == False:
  raise Exception('The first Q-point is not Gamma!')

# Choose a k-point in the list below:
print 'Choose a k-point number in the list below for A_nk(omega,T)\n'
for ii in N.arange(DDBtmp.nkpt):
  print '%s) %s' % (ii,DDBtmp.kpt[ii,:])
user_input = raw_input('Enter the number of the k-point you want to analyse\n')
try:
  kpt = N.int(user_input)
except ValueError:
  raise Exception('The value you enter is not an integer!')

# Take the EIG at Gamma
user_input = raw_input('Enter the name of the unperturbed EIG.nc file at Gamma\n')
if len(user_input.split()) != 1:
  raise Exception("You sould only provide 1 file")
else:
  eig0 = system(directory='.',filename=user_input)

N.arange# Find the degenerate eigenstates
DDB = system(directory='.',filename=DDB_files[0])
degen =  N.zeros((DDB.nkpt,DDB.nband),dtype=int)
for ikpt in N.arange(DDB.nkpt):
  count = 0
  for iband in N.arange(DDB.nband):
    if iband != DDB.nband-1:
      if N.allclose(eig0.EIG[0,ikpt,iband+1], eig0.EIG[0,ikpt,iband]):
        degen[ikpt,iband] = count
      else:
        degen[ikpt,iband] = count
        count += 1
        continue
    else:
      if N.allclose(eig0.EIG[0,ikpt,iband-1], eig0.EIG[0,ikpt,iband]):
        degen[ikpt,iband] = count   
    if iband != 0:
      if N.allclose(eig0.EIG[0,ikpt,iband-1], eig0.EIG[0,ikpt,iband]):
        degen[ikpt,iband] = count
    else:
      if N.allclose(eig0.EIG[0,ikpt,iband+1], eig0.EIG[0,ikpt,iband]):
        degen[ikpt,iband] = count

# Create the random Q-integration (wtq=1/nqpt):
wtq = N.ones((nbQ))
wtq = wtq*(1.0/nbQ)


# Compute phonon freq. and eigenvector for each Q-point 
# from each DDB (1 qpt per DDB file)
fan_tot = N.zeros((len(freq)),dtype=complex)
ddw_tot = N.zeros((),dtype=complex)
self_energy = N.zeros((len(freq)),dtype=complex)
spectral = N.zeros((len(freq)))
iiqpt = 0
DDB = system()
FANterm = system()
EIGR2D = system()
eigq = system()
#Compute the spectral function
for ii in DDB_files:
  DDB.__init__(directory='.',filename=ii)

# Calcul of gprimd from rprimd
  rprimd = DDB.rprim*DDB.acell
  gprimd = N.linalg.inv(N.matrix(rprimd))

# Transform from 2nd-order matrix (non-cartesian coordinates, 
# masses not included, asr not included ) from DDB to
# dynamical matrix, in cartesian coordinates, asr not imposed.
  IFC_cart = N.zeros((3,DDB.natom,3,DDB.natom),dtype=complex)
  for ii in N.arange(DDB.natom):
    for jj in N.arange(DDB.natom):
      for dir1 in N.arange(3):
        for dir2 in N.arange(3):
          for dir3 in N.arange(3):
            for dir4 in N.arange(3):
              IFC_cart[dir1,ii,dir2,jj] += gprimd[dir1,dir3]*DDB.IFC[dir3,ii,dir4,jj] \
            *gprimd[dir2,dir4]

# Reduce the 4 dimensional IFC_cart matrice to 2 dimensional Dynamical matrice.
  ipert1 = 0
  Dyn_mat = N.zeros((3*DDB.natom,3*DDB.natom),dtype=complex)
  while ipert1 < 3*DDB.natom:
    for ii in N.arange(DDB.natom):
      for dir1 in N.arange(3):
        ipert2 = 0
        while ipert2 < 3*DDB.natom:
          for jj in N.arange(DDB.natom):
            for dir2 in N.arange(3):
              Dyn_mat[ipert1,ipert2] = IFC_cart[dir1,ii,dir2,jj]
              ipert2 += 1
        ipert1 += 1

# Hermitianize the dynamical matrix
  dynmat = N.matrix(Dyn_mat)
  dynmat = 0.5*(dynmat + dynmat.transpose().conjugate())

# Solve the eigenvalue problem with linear algebra (Diagonalize the matrix)
  [eigval,eigvect]=N.linalg.eigh(Dyn_mat)

# Orthonormality relation 
  eigvect = (eigvect)*N.sqrt(5.4857990965007152E-4/float(DDB.amu[0]))

# Phonon frequency (5.4857990946E-4 = 1 au of electron mass)
  omega = N.sqrt((eigval*5.4857990965007152E-4)/float(DDB.amu[0]))

# Now read the EIGq, EIGR2D and FAN
  user_input = raw_input('Enter the name of the the _EIG.nc that contain\n\
 the %s Q-points. \n' %DDB.iqpt)
  if len(user_input.split()) != 1:
    raise Exception("You sould provide only 1 ***_EIG.nc file" )
  else:
    eigq.__init__(directory='.',filename=user_input.split()[0])

  user_input = raw_input('Enter the name of the the EIGR2D that contain\n\
 the %s Q-points. \n' %DDB.iqpt)
  if len(user_input.split()) != 1:
    raise Exception("You sould provide only 1 ***_EIGR2D file" )
  else:
    EIGR2D.__init__(directory='.',filename=user_input.split()[0])

  user_input = raw_input('Enter the name of the the _FAN that contain\n\
 the %s Q-points. \n' %DDB.iqpt)
  if len(user_input.split()) != 1:
    raise Exception("You sould provide only 1 ***_FAN file" )
  else:
    FANterm.__init__(directory='.',filename=user_input.split()[0])

# Compute the displacement = eigenvectors of the DDB. 
# Due to metric problem in reduce coordinate we have to work in cartesian
# but then go back to reduce because our EIGR2D matrix elements are in reduced coord.
  displ_FAN =  N.zeros((3,3),dtype=complex)
  displ_DDW =  N.zeros((3,3),dtype=complex)
  if N.allclose(EIGR2D.iqpt,[0.0,0.0,0.0]):
    ddw_save = N.zeros((3,EIGR2D.natom,3,EIGR2D.natom),dtype=complex)
  fan_add = N.zeros((len(freq)),dtype=complex)
  ddw_corr = N.zeros((),dtype=complex)

  for imode in N.arange(3*EIGR2D.natom): #Loop on perturbation (6 for 2 atoms)
    if omega[imode].real > tol6:
      for iatom1 in N.arange(EIGR2D.natom):
        for iatom2 in N.arange(EIGR2D.natom):
          for idir1 in N.arange(0,3):
            for idir2 in N.arange(0,3):
              displ_DDW[idir1,idir2] = (eigvect[3*iatom2+idir2,imode].conj()\
                 *eigvect[3*iatom2+idir1,imode]+eigvect[3*iatom1+idir2,imode].conj()\
                 *eigvect[3*iatom1+idir1,imode])/(4.0*omega[imode].real)
          # Now switch to reduced coordinates in 2 steps (more efficient)
          tmp_displ_DDW = N.zeros((3,3),dtype=complex)
          for idir1 in N.arange(3):
            for idir2 in N.arange(3):
              tmp_displ_DDW[:,idir1] = tmp_displ_DDW[:,idir1]+displ_DDW[:,idir2]*gprimd[idir2,idir1]
          displ_red_DDW = N.zeros((3,3),dtype=complex)
          for idir1 in N.arange(3):
            for idir2 in N.arange(3):
              displ_red_DDW[idir1,:] = displ_red_DDW[idir1,:] + tmp_displ_DDW[idir2,:]*gprimd[idir2,idir1]
          # Now compute the T=0 shift due to this q point
          for idir1 in N.arange(3):
            for idir2 in N.arange(3):
              # DDW matrix only computed at Gamma  
              if N.allclose(EIGR2D.iqpt,[0.0,0.0,0.0]):
                ddw_save[idir1,iatom1,idir2,iatom2] = EIGR2D.EIG2D[kpt,band-1,idir1,iatom1,idir2,iatom2]
                ddw_corr += ddw_save[idir1,iatom1,idir2,iatom2]*\
                    displ_red_DDW[idir1,idir2]
              else:
                ddw_corr += ddw_save[idir1,iatom1,idir2,iatom2]*\
                    displ_red_DDW[idir1,idir2]
      if temperature < tol6:
        bose = 0
      else:
        bose = 1.0/(N.exp(omega[imode].real/(kb_HaK*temperature))-1)
      ddw_corr = ddw_corr*(2*bose+1.0)
      for jband in N.arange(EIGR2D.nband):
        index = 0
        for ifreq in freq:
          delta_E = ifreq - eigq.EIG[0,ikpt,jband] + smearing*1j
          fan_add[index] = fan_add[index] + FANterm.FAN[kpt,band-1,imode,jband]*(\
                                  (bose+0.5)*(2*delta_E/(delta_E**2-(omega[imode].real)**2)) \
                                - (1-EIGR2D.occ[iband])*(omega[imode].real/(delta_E**2-(omega[imode].real)**2)))\
                                 /(2.0*omega[imode].real)
          index += 1

  fan_tot += fan_add*wtq[iiqpt] # for each freq.
  ddw_tot += ddw_corr*wtq[iiqpt]
  iiqpt +=1


print 'eig0.EIG[0,kpt,band-1]',eig0.EIG[0,kpt,band-1]*Ha2eV
# Computation of the self-energy and the spectral function at a given temperature.
index = 0
with open(output,"w") as O:
  O.write('# Spectral function at T = '+str(temperature)+' for band = '+str(band)+' and kpt = '+str(DDBtmp.kpt[kpt,:])+'\n')
  O.write('# Omega [eV]  Spectral function\n')
  for ifreq in freq:
    self_energy[index] = 1.0/(ifreq-eig0.EIG[0,kpt,band-1]-fan_tot[index]-ddw_tot)
    spectral[index]= (1.0/N.pi)*N.abs((self_energy[index]).imag)
    O.write(str(ifreq*Ha2eV)+' '+str(spectral[index])+'\n')
    index +=1

# Make a matplotlibplot
#plt.plot(freq*Ha2eV,spectral)
#plt.ylabel('Spectral function')
#plt.xlabel('Energy [eV]')
#plt.show()