1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
#!/usr/bin/env python
# Author: Samuel Ponc\'e
# Date: 30/04/2013
# Script to compute the spectral function
import sys
import os
from rf_mods import system
import multiprocessing
from datetime import datetime
try:
import numpy as N
except ImportError:
import warnings
warnings.warn("The numpy module is missing!")
raise
try:
import netCDF4 as nc
except ImportError:
import warnings
warnings.warn("The netCDF4 module is missing!")
raise
#import matplotlib.pyplot as plt
start = datetime.now()
print 'Start on %s/%s/%s at %sh%s ' %(start.day,start.month,start.year,start.hour,start.minute)
#############
# Constants #
#############
# If you want to hardcode the weight of the k-points you can do it here:
# wtq = [0.00, 0.125, 0.5,0.375]
# The numb of cpu used is hardcoded for now
nb_cpus = 2
tol6 = 1E-6
tol8 = 1E-8
Ha2eV = 27.21138386
kb_HaK = 3.1668154267112283e-06
##############
# Definition #
##############
def FanDDW(arguments):
wtq,eigq_files,DDB_files,EIGR2D_files,FAN_files = arguments
DDB = system()
FANterm = system()
EIGR2D = system()
eigq = system()
DDB.__init__(directory='.',filename=DDB_files)
tot_corr = N.zeros((len(freq)),dtype=complex)
self_energy = N.zeros((len(freq)),dtype=complex)
spectral = N.zeros((len(freq)))
# Calcul of gprimd from rprimd
rprimd = DDB.rprim*DDB.acell
gprimd = N.linalg.inv(N.matrix(rprimd))
# Transform from 2nd-order matrix (non-cartesian coordinates,
# masses not included, asr not included ) from DDB to
# dynamical matrix, in cartesian coordinates, asr not imposed.
IFC_cart = N.zeros((3,DDB.natom,3,DDB.natom),dtype=complex)
for ii in N.arange(DDB.natom):
for jj in N.arange(DDB.natom):
for dir1 in N.arange(3):
for dir2 in N.arange(3):
for dir3 in N.arange(3):
for dir4 in N.arange(3):
IFC_cart[dir1,ii,dir2,jj] += gprimd[dir1,dir3]*DDB.IFC[dir3,ii,dir4,jj] \
*gprimd[dir2,dir4]
# Reduce the 4 dimensional IFC_cart matrice to 2 dimensional Dynamical matrice.
ipert1 = 0
Dyn_mat = N.zeros((3*DDB.natom,3*DDB.natom),dtype=complex)
while ipert1 < 3*DDB.natom:
for ii in N.arange(DDB.natom):
for dir1 in N.arange(3):
ipert2 = 0
while ipert2 < 3*DDB.natom:
for jj in N.arange(DDB.natom):
for dir2 in N.arange(3):
Dyn_mat[ipert1,ipert2] = IFC_cart[dir1,ii,dir2,jj]
ipert2 += 1
ipert1 += 1
# Hermitianize the dynamical matrix
dynmat = N.matrix(Dyn_mat)
dynmat = 0.5*(dynmat + dynmat.transpose().conjugate())
# Solve the eigenvalue problem with linear algebra (Diagonalize the matrix)
[eigval,eigvect]=N.linalg.eigh(Dyn_mat)
# Orthonormality relation
eigvect = (eigvect)*N.sqrt(5.4857990965007152E-4/float(DDB.amu[0]))
# Phonon frequency (5.4857990946E-4 = 1 au of electron mass)
omega = N.sqrt((eigval*5.4857990965007152E-4)/float(DDB.amu[0]))
# Now read the EIGq, EIGR2D and FAN
eigq.__init__(directory='.',filename=eigq_files)
EIGR2D.__init__(directory='.',filename=EIGR2D_files)
FANterm.__init__(directory='.',filename=FAN_files)
# Compute the displacement = eigenvectors of the DDB.
# Due to metric problem in reduce coordinate we have to work in cartesian
# but then go back to reduce because our EIGR2D matrix elements are in reduced coord.
displ_FAN = N.zeros((3,3),dtype=complex)
displ_DDW = N.zeros((3,3),dtype=complex)
fan_add = N.zeros((len(freq)),dtype=complex)
fan_corr = N.zeros((),dtype=complex)
ddw_corr = N.zeros((),dtype=complex)
for imode in N.arange(3*EIGR2D.natom): #Loop on perturbation (6 for 2 atoms)
if omega[imode].real > tol6:
for iatom1 in N.arange(EIGR2D.natom):
for iatom2 in N.arange(EIGR2D.natom):
for idir1 in N.arange(0,3):
for idir2 in N.arange(0,3):
displ_FAN[idir1,idir2] = eigvect[3*iatom2+idir2,imode].conj()\
*eigvect[3*iatom1+idir1,imode]/(2.0*omega[imode].real)
displ_DDW[idir1,idir2] = (eigvect[3*iatom2+idir2,imode].conj()\
*eigvect[3*iatom2+idir1,imode]+eigvect[3*iatom1+idir2,imode].conj()\
*eigvect[3*iatom1+idir1,imode])/(4.0*omega[imode].real)
# Now switch to reduced coordinates in 2 steps (more efficient)
tmp_displ_FAN = N.zeros((3,3),dtype=complex)
tmp_displ_DDW = N.zeros((3,3),dtype=complex)
for idir1 in N.arange(3):
for idir2 in N.arange(3):
tmp_displ_FAN[:,idir1] = tmp_displ_FAN[:,idir1]+displ_FAN[:,idir2]*gprimd[idir2,idir1]
tmp_displ_DDW[:,idir1] = tmp_displ_DDW[:,idir1]+displ_DDW[:,idir2]*gprimd[idir2,idir1]
displ_red_FAN = N.zeros((3,3),dtype=complex)
displ_red_DDW = N.zeros((3,3),dtype=complex)
for idir1 in N.arange(3):
for idir2 in N.arange(3):
displ_red_FAN[idir1,:] = displ_red_FAN[idir1,:] + tmp_displ_FAN[idir2,:]*gprimd[idir2,idir1]
displ_red_DDW[idir1,:] = displ_red_DDW[idir1,:] + tmp_displ_DDW[idir2,:]*gprimd[idir2,idir1]
# Now compute the T=0 shift due to this q point
for idir1 in N.arange(3):
for idir2 in N.arange(3):
fan_corr += EIGR2D.EIG2D[kpt,band-1,idir1,iatom1,idir2,iatom2]*\
displ_red_FAN[idir1,idir2]
ddw_corr += ddw_save[idir1,iatom1,idir2,iatom2]*\
displ_red_DDW[idir1,idir2]
if temperature < tol6:
bose = 0
else:
bose = 1.0/(N.exp(omega[imode].real/(kb_HaK*temperature))-1)
fan_corr = fan_corr*(2*bose+1.0)
ddw_corr = ddw_corr*(2*bose+1.0)
for jband in N.arange(EIGR2D.nband):
index = 0
for ifreq in freq:
delta_E = ifreq - eigq.EIG[0,ikpt,jband] + smearing*1j
fan_add[index] = fan_add[index] + FANterm.FAN[kpt,band-1,imode,jband]*(\
(bose+0.5)*(2*delta_E/(delta_E**2-(omega[imode].real)**2)) \
- (1-EIGR2D.occ[iband])*(omega[imode].real/(delta_E**2-(omega[imode].real)**2))\
-(bose+0.5)*2/delta_E)/(2.0*omega[imode].real)
index += 1
tot_corr[:] = (fan_corr+ddw_corr+fan_add[:])*wtq
return tot_corr
#####################
# End of definitions
######################################################################################
# Interaction with the user
print '\n##################################################'
print '# Spectral function of the dynamical self-energy #'
print '##################################################'
print '\nThis script compute the zero-point motion and the temperature dependence \n\
of eigenenergies due to electron-phonon interaction. This script can \n\
only compute Q-points with the same weight. If you want symmetry you must hack the script.\n\
WARNING: The first Q-point MUST be the Gamma point\n'
# Define the output file name
user_input = raw_input('Enter name of the output file\n')
output = user_input
# Get the value of the smearing parameter (in eV)
user_input = raw_input('Enter value of the smearing parameter (in eV)\n')
smearing = N.float(user_input)
smearing = smearing/Ha2eV
# Frequency range?
user_input = raw_input('What is the range of frequencies you want to compute your spectral function upon (in eV)\n\
[start end steps]. e.g. -15 10 0.5 for an energy step every 0.5 eV between -15 eV and 10 eV. \n')
freq = N.arange(N.float(user_input.split()[0]),N.float(user_input.split()[1]),N.float(user_input.split()[2]))
freq = freq/Ha2eV # From eV to Ha
# Temperature
user_input = raw_input('Enter the temperature for the spectral function A_nk(omega,T) [in K]\n')
temperature = N.float(user_input)
# Band index
user_input = raw_input('Enter the band index for the spectral function A_nk(omega,T)\n')
try:
band = N.int(user_input)
except ValueError:
raise Exception('The value you enter is not an integer!')
# Get the nb of random Q-points from user
user_input = raw_input('Enter the number of random Q-points you have\n')
try:
nbQ = int(user_input)
except ValueError:
raise Exception('The value you enter is not an integer!')
# Get the path of the DDB files from user
user_input = raw_input('Enter the name of the %s DDB files separated by a space\n' %nbQ)
if len(user_input.split()) != nbQ:
raise Exception("You sould provide %s DDB files" %nbQ)
else:
DDB_files = user_input.split()
# Test if the first file is at the Gamma point
DDBtmp = system(directory='.',filename=DDB_files[0])
if N.allclose(DDBtmp.iqpt,[0.0,0.0,0.0]) == False:
raise Exception('The first Q-point is not Gamma!')
# Choose a k-point in the list below:
print 'Choose a k-point number in the list below for A_nk(omega,T)\n'
for ii in N.arange(DDBtmp.nkpt):
print '%s) %s' % (ii,DDBtmp.kpt[ii,:])
user_input = raw_input('Enter the number of the k-point you want to analyse\n')
try:
kpt = N.int(user_input)
except ValueError:
raise Exception('The value you enter is not an integer!')
# Get the path of the eigq files from user
user_input = raw_input('Enter the name of the %s eigq files separated by a space\n' %nbQ)
if len(user_input.split()) != nbQ:
raise Exception("You sould provide %s DDB files" %nbQ)
else:
eigq_files = user_input.split()
# Get the path of the EIGR2D files from user
user_input = raw_input('Enter the name of the %s EIGR2D files separated by a space\n' %nbQ)
if len(user_input.split()) != nbQ:
raise Exception("You sould provide %s DDB files" %nbQ)
else:
EIGR2D_files = user_input.split()
# Get the path of the FAN files from user
user_input = raw_input('Enter the name of the %s FAN files separated by a space\n' %nbQ)
if len(user_input.split()) != nbQ:
raise Exception("You sould provide %s DDB files" %nbQ)
else:
FAN_files = user_input.split()
# Take the EIG at Gamma
user_input = raw_input('Enter the name of the unperturbed EIG.nc file at Gamma\n')
if len(user_input.split()) != 1:
raise Exception("You sould only provide 1 file")
else:
eig0 = system(directory='.',filename=user_input)
N.arange# Find the degenerate eigenstates
DDB = system(directory='.',filename=DDB_files[0])
degen = N.zeros((DDB.nkpt,DDB.nband),dtype=int)
for ikpt in N.arange(DDB.nkpt):
count = 0
for iband in N.arange(DDB.nband):
if iband != DDB.nband-1:
if N.allclose(eig0.EIG[0,ikpt,iband+1], eig0.EIG[0,ikpt,iband]):
degen[ikpt,iband] = count
else:
degen[ikpt,iband] = count
count += 1
continue
else:
if N.allclose(eig0.EIG[0,ikpt,iband-1], eig0.EIG[0,ikpt,iband]):
degen[ikpt,iband] = count
if iband != 0:
if N.allclose(eig0.EIG[0,ikpt,iband-1], eig0.EIG[0,ikpt,iband]):
degen[ikpt,iband] = count
else:
if N.allclose(eig0.EIG[0,ikpt,iband+1], eig0.EIG[0,ikpt,iband]):
degen[ikpt,iband] = count
# Read the EIGR2D file at Gamma and save it in ddw_save
EIGR2D = system()
EIGR2D.__init__(directory='.',filename=EIGR2D_files[0])
ddw_save = N.zeros((3,EIGR2D.natom,3,EIGR2D.natom),dtype=complex)
for iatom1 in N.arange(EIGR2D.natom):
for iatom2 in N.arange(EIGR2D.natom):
for idir1 in N.arange(3):
for idir2 in N.arange(3):
ddw_save[idir1,iatom1,idir2,iatom2] = EIGR2D.EIG2D[kpt,band-1,idir1,iatom1,idir2,iatom2]
# Create the random Q-integration (wtq=1/nqpt):
wtq = N.ones((nbQ))
wtq = wtq*(1.0/nbQ)
# Parallelize the work over cpus
pool = multiprocessing.Pool(processes=nb_cpus)
total = pool.map(FanDDW, zip(wtq,eigq_files,DDB_files,EIGR2D_files,FAN_files))
FanDDW_corr = sum(total)
# Computation of the self-energy and the spectral function at a given temperature.
print 'The dft eigenenergy is e_nk = ',eig0.EIG[0,kpt,band-1]*Ha2eV
self_energy = N.zeros((len(freq)),dtype=complex)
spectral = N.zeros((len(freq)))
index = 0
with open(output,"w") as O:
O.write('# Spectral function at T = '+str(temperature)+' for band = '+str(band)+' and kpt = '+str(DDBtmp.kpt[kpt,:])+'\n')
O.write('# Omega [eV] Spectral function\n')
for ifreq in freq:
self_energy[index] = 1.0/(ifreq-eig0.EIG[0,kpt,band-1]-FanDDW_corr[index])
spectral[index]= (1.0/N.pi)*N.abs((self_energy[index]).imag)
O.write(str(ifreq*Ha2eV)+' '+str(spectral[index])+'\n')
index +=1
# Make a matplotlibplot
#plt.plot(freq*Ha2eV,spectral)
#plt.ylabel('Spectral function')
#plt.xlabel('Energy [eV]')
#plt.show()
# Report wall time
end = datetime.now()
print 'End on %s/%s/%s at %s h %s ' %(end.day,end.month,end.year,end.hour,end.minute)
runtime = end - start
print "Runtime: %s seconds (or %s minutes)" %(runtime.seconds,float(runtime.seconds)/60.0)
|