1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
#include <linux/kernel.h>
#include <linux/string.h>
#include <asm/hwrpb.h>
#include <linux/version.h>
#include <asm/system.h>
#include <stdarg.h>
#include "aboot.h"
#include "cons.h"
unsigned long free_mem_ptr = 0;
int printf(const char *fmt, ...)
{
static char buf[1024];
va_list args;
long len, num_lf;
char *src, *dst;
va_start(args, fmt);
len = vsprintf(buf, fmt, args);
va_end(args);
/* count number of linefeeds in string: */
num_lf = 0;
for (src = buf; *src; ++src) {
if (*src == '\n') {
++num_lf;
}
}
if (num_lf) {
/* expand each linefeed into carriage-return/linefeed: */
for (dst = src + num_lf; src >= buf; ) {
if (*src == '\n') {
*dst-- = '\r';
}
*dst-- = *src--;
}
}
return cons_puts(buf, len + num_lf);
}
/*
* Find a physical address of a virtual object..
*
* This is easy using the virtual page table address.
*/
struct pcb_struct *find_pa(unsigned long *vptb, struct pcb_struct *pcb)
{
unsigned long address = (unsigned long) pcb;
unsigned long result;
result = vptb[address >> 13];
result >>= 32;
result <<= 13;
result |= address & 0x1fff;
return (struct pcb_struct *) result;
}
/*
* This function moves into OSF/1 pal-code, and has a temporary
* PCB for that. The kernel proper should replace this PCB with
* the real one as soon as possible.
*
* The page table muckery in here depends on the fact that the boot
* code has the L1 page table identity-map itself in the second PTE
* in the L1 page table. Thus the L1-page is virtually addressable
* itself (through three levels) at virtual address 0x200802000.
*
* As we don't want it there anyway, we also move the L1 self-map
* up as high as we can, so that the last entry in the L1 page table
* maps the page tables.
*
* As a result, the OSF/1 pal-code will instead use a virtual page table
* map located at 0xffffffe00000000.
*/
#define pcb_va ((struct pcb_struct *) 0x20000000)
#define old_vptb (0x0000000200000000UL)
#define new_vptb (0xfffffffe00000000UL)
void pal_init(void)
{
unsigned long i, rev, sum;
unsigned long *L1, *l;
struct percpu_struct * percpu;
struct pcb_struct * pcb_pa;
/* Find the level 1 page table and duplicate it in high memory */
L1 = (unsigned long *) 0x200802000UL; /* (1<<33 | 1<<23 | 1<<13) */
L1[1023] = L1[1];
percpu = (struct percpu_struct *) (INIT_HWRPB->processor_offset
+ (unsigned long) INIT_HWRPB),
pcb_va->ksp = 0;
pcb_va->usp = 0;
pcb_va->ptbr = L1[1] >> 32;
pcb_va->asn = 0;
pcb_va->pcc = 0;
pcb_va->unique = 0;
pcb_va->flags = 1;
pcb_pa = find_pa((unsigned long *) old_vptb, pcb_va);
printf("aboot: switching to OSF/1 PALcode");
/*
* a0 = 2 (OSF)
* a1 = return address, but we give the asm the virtual addr of the PCB
* a2 = physical addr of PCB
* a3 = new virtual page table pointer
* a4 = KSP (but we give it 0, asm sets it)
*/
i = switch_to_osf_pal(
2,
pcb_va,
pcb_pa,
new_vptb,
0);
if (i) {
printf("---failed, code %ld\n", i);
halt();
}
rev = percpu->pal_revision = percpu->palcode_avail[2];
INIT_HWRPB->vptb = new_vptb;
/* update checksum: */
sum = 0;
for (l = (unsigned long *) INIT_HWRPB; l < (unsigned long *) &INIT_HWRPB->chksum; ++l)
sum += *l;
INIT_HWRPB->chksum = sum;
printf(" version %ld.%ld\n", (rev >> 8) & 0xff, rev & 0xff);
/* remove the old virtual page-table mapping */
L1[1] = 0;
tbia();
}
unsigned long memory_end(void)
{
int i;
unsigned long high = 0;
struct memclust_struct *cluster;
struct memdesc_struct *memdesc;
memdesc = (struct memdesc_struct *)
(INIT_HWRPB->mddt_offset + (unsigned long) INIT_HWRPB);
cluster = memdesc->cluster;
for (i = memdesc->numclusters; i > 0; i--, cluster++) {
unsigned long tmp;
if (cluster->usage != 0) {
/* this is a PAL or NVRAM cluster (not for the OS) */
continue;
}
tmp = (cluster->start_pfn + cluster->numpages) << page_shift;
if (tmp > high) {
high = tmp;
}
}
return page_offset + high;
}
static void error(char *x)
{
printf("%s\n", x);
_longjmp(jump_buffer, 1);
}
void unzip_error(char *x)
{
printf("\nunzip: ");
error(x);
}
void *malloc(size_t size)
{
if (!free_mem_ptr) {
free_mem_ptr = memory_end();
}
free_mem_ptr = (free_mem_ptr - size) & ~(sizeof(long) - 1);
if ((char*) free_mem_ptr <= dest_addr + INIT_HWRPB->pagesize) {
error("\nout of memory");
}
return (void*) free_mem_ptr;
}
void free(void *where)
{
/* don't care */
}
void
getline (char *buf, int maxlen)
{
int len=0;
char c;
do {
c = cons_getchar();
switch (c) {
case 0:
case 10:
case 13:
break;
case 8:
case 127:
if (len > 0) {
--len;
cons_putchar(8);
cons_putchar(' ');
cons_putchar(8);
}
break;
default:
if (len < maxlen-1 && c >= ' ') {
buf[len] = c;
len++;
cons_putchar(c);
}
break;
}
} while (c != 13 && c != 10);
buf[len] = 0;
}
|