1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: function_ref.h
// -----------------------------------------------------------------------------
//
// This header file defines the `absl::FunctionRef` type for holding a
// non-owning reference to an object of any invocable type. This function
// reference is typically most useful as a type-erased argument type for
// accepting function types that neither take ownership nor copy the type; using
// the reference type in this case avoids a copy and an allocation. Best
// practices of other non-owning reference-like objects (such as
// `absl::string_view`) apply here.
//
// An `absl::FunctionRef` is similar in usage to a `std::function` but has the
// following differences:
//
// * It doesn't own the underlying object.
// * It doesn't have a null or empty state.
// * It never performs deep copies or allocations.
// * It's much faster and cheaper to construct.
// * It's trivially copyable and destructable.
//
// Generally, `absl::FunctionRef` should not be used as a return value, data
// member, or to initialize a `std::function`. Such usages will often lead to
// problematic lifetime issues. Once you convert something to an
// `absl::FunctionRef` you cannot make a deep copy later.
//
// This class is suitable for use wherever a "const std::function<>&"
// would be used without making a copy. ForEach functions and other versions of
// the visitor pattern are a good example of when this class should be used.
//
// This class is trivial to copy and should be passed by value.
#ifndef ABSL_FUNCTIONAL_FUNCTION_REF_H_
#define ABSL_FUNCTIONAL_FUNCTION_REF_H_
#include <cassert>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/functional/internal/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// FunctionRef
//
// Dummy class declaration to allow the partial specialization based on function
// types below.
template <typename T>
class FunctionRef;
// FunctionRef
//
// An `absl::FunctionRef` is a lightweight wrapper to any invocable object with
// a compatible signature. Generally, an `absl::FunctionRef` should only be used
// as an argument type and should be preferred as an argument over a const
// reference to a `std::function`. `absl::FunctionRef` itself does not allocate,
// although the wrapped invocable may.
//
// Example:
//
// // The following function takes a function callback by const reference
// bool Visitor(const std::function<void(my_proto&,
// absl::string_view)>& callback);
//
// // Assuming that the function is not stored or otherwise copied, it can be
// // replaced by an `absl::FunctionRef`:
// bool Visitor(absl::FunctionRef<void(my_proto&, absl::string_view)>
// callback);
template <typename R, typename... Args>
class ABSL_ATTRIBUTE_VIEW FunctionRef<R(Args...)> {
protected:
// Used to disable constructors for objects that are not compatible with the
// signature of this FunctionRef.
template <typename F, typename... U>
using EnableIfCompatible =
std::enable_if_t<std::is_invocable_r<R, F, U..., Args...>::value>;
// Internal constructor to supersede the copying constructor
template <typename F>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(std::in_place_t, F&& f ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: invoker_(&absl::functional_internal::InvokeObject<F&, R, Args...>) {
absl::functional_internal::AssertNonNull(f);
ptr_.obj = &f;
}
public:
// Constructs a FunctionRef from any invocable type.
template <typename F,
typename = EnableIfCompatible<std::enable_if_t<
!std::is_same_v<FunctionRef, absl::remove_cvref_t<F>>, F&>>>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(F&& f ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: FunctionRef(std::in_place, std::forward<F>(f)) {}
// Overload for function pointers. This eliminates a level of indirection that
// would happen if the above overload was used (it lets us store the pointer
// instead of a pointer to a pointer).
//
// This overload is also used for references to functions, since references to
// functions can decay to function pointers implicitly.
template <typename F, typename = EnableIfCompatible<F*>,
absl::functional_internal::EnableIf<std::is_function_v<F>> = 0>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(F* f ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: invoker_(&absl::functional_internal::InvokeFunction<F*, R, Args...>) {
assert(f != nullptr);
ptr_.fun = reinterpret_cast<decltype(ptr_.fun)>(f);
}
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
// Similar to the other overloads, but passes the address of a known callable
// `F` at compile time. This allows calling arbitrary functions while avoiding
// an indirection.
// Needs C++20 as `nontype_t` needs C++20 for `auto` template parameters.
template <auto F, typename = EnableIfCompatible<decltype(F)>>
FunctionRef(nontype_t<F>) noexcept // NOLINT(google-explicit-constructor)
: invoker_(&absl::functional_internal::InvokeFunction<decltype(F), F, R,
Args...>) {}
template <
auto F, typename Obj,
typename = EnableIfCompatible<decltype(F), std::remove_reference_t<Obj>&>,
absl::functional_internal::EnableIf<!std::is_rvalue_reference_v<Obj&&>> =
0>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(nontype_t<F>, Obj&& obj ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: invoker_(&absl::functional_internal::InvokeObject<Obj&, decltype(F), F,
R, Args...>) {
ptr_.obj = std::addressof(obj);
}
template <auto F, typename Obj,
typename = EnableIfCompatible<decltype(F), Obj*>>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(nontype_t<F>, Obj* obj ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: invoker_(&absl::functional_internal::InvokePtr<Obj, decltype(F), F, R,
Args...>) {
ptr_.obj = obj;
}
#endif
using absl_internal_is_view = std::true_type;
// Call the underlying object.
R operator()(Args... args) const {
return invoker_(ptr_, std::forward<Args>(args)...);
}
private:
absl::functional_internal::VoidPtr ptr_;
absl::functional_internal::Invoker<R, Args...> invoker_;
};
// Allow const qualified function signatures. Since FunctionRef requires
// constness anyway we can just make this a no-op.
template <typename R, typename... Args>
class ABSL_ATTRIBUTE_VIEW
FunctionRef<R(Args...) const> : private FunctionRef<R(Args...)> {
using Base = FunctionRef<R(Args...)>;
template <typename F, typename... U>
using EnableIfCompatible =
typename Base::template EnableIfCompatible<F, U...>;
public:
template <
typename F,
typename = EnableIfCompatible<std::enable_if_t<
!std::is_same_v<FunctionRef, absl::remove_cvref_t<F>>, const F&>>>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(const F& f ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: Base(std::in_place_t(), f) {}
template <typename F, typename = EnableIfCompatible<F*>,
absl::functional_internal::EnableIf<std::is_function_v<F>> = 0>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(F* f ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept : Base(f) {}
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
template <auto F, typename = EnableIfCompatible<decltype(F)>>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(nontype_t<F> arg) noexcept : Base(arg) {}
template <auto F, typename Obj,
typename = EnableIfCompatible<decltype(F),
const std::remove_reference_t<Obj>&>,
absl::functional_internal::EnableIf<
!std::is_rvalue_reference_v<Obj&&>> = 0>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(nontype_t<F> arg,
Obj&& obj ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: Base(arg, std::forward<Obj>(obj)) {}
template <auto F, typename Obj,
typename = EnableIfCompatible<decltype(F), const Obj*>>
// NOLINTNEXTLINE(google-explicit-constructor)
FunctionRef(nontype_t<F> arg,
const Obj* obj ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: Base(arg, obj) {}
#endif
using absl_internal_is_view = std::true_type;
using Base::operator();
};
template <class F>
FunctionRef(F*) -> FunctionRef<F>;
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
template <auto Func>
FunctionRef(nontype_t<Func>)
-> FunctionRef<std::remove_pointer_t<decltype(Func)>>;
template <class M, class T, M T::* Func, class U>
FunctionRef(nontype_t<Func>, U&&)
-> FunctionRef<std::enable_if_t<std::is_member_pointer_v<M T::*>, M>>;
template <class M, class T, M T::* Func, class U>
FunctionRef(nontype_t<Func>, U&&) -> FunctionRef<std::enable_if_t<
std::is_object_v<M>, std::invoke_result_t<decltype(Func), U&>()>>;
template <class R, class T, class... Args, R (*Func)(T, Args...), class U>
FunctionRef(nontype_t<Func>, U&&) -> FunctionRef<R(Args...)>;
#endif
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FUNCTIONAL_FUNCTION_REF_H_
|