1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
// Copyright 2025 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: chunked_queue.h
// -----------------------------------------------------------------------------
//
// `std::deque` provides random access and fast push/pop back/front. It is
// implemented as an array of fixed blocks. It provides no control of block size
// and implementations differ; libstdc++ tries to allocate blocks of ~512 bytes
// and libc++ tries for blocks of ~4k bytes.
//
// `absl::chunked_queue` provides the same minus random access. It is
// implemented as a double-linked list of fixed or variable sized blocks.
//
// `absl::chunked_queue` is useful when memory usage is paramount as it provides
// finegrained and configurable block sizing.
//
// The interface supported by this class is limited to:
//
// empty()
// size()
// max_size()
// shrink_to_fit()
// resize()
// assign()
// push_back()
// emplace_back()
// pop_front()
// front()
// back()
// swap()
// clear()
// begin(), end()
// cbegin(), cend()
//
// === ADVANCED USAGE
//
// == clear()
//
// As an optimization clear() leaves the first block of the chunked_queue
// allocated (but empty). So clear will not delete all memory of the container.
// In order to do so, call shrink_to_fit() or swap the container with an empty
// one.
//
// absl::chunked_queue<int64> q = {1, 2, 3};
// q.clear();
// q.shrink_to_fit();
//
// == block size customization
//
// chunked_queue allows customization of the block size for each block. By
// default the block size is set to 1 element and the size doubles for the next
// block until it reaches the default max block size, which is 128 elements.
//
// = fixed size
//
// When only the first block size parameter is specified, it sets a fixed block
// size for all blocks:
//
// chunked_queue<T, 32>: 32 elements per block
//
// The smaller the block size, the less the memory usage for small queues at the
// cost of performance. Caveat: For large queues, a smaller block size will
// increase memory usage, and reduce performance.
//
// = variable size
//
// When both block size parameters are specified, they set the min and max block
// sizes for the blocks. Initially the queue starts with the min block size and
// as it grows, the size of each block grows until it reaches the max block
// size.
// New blocks are double the size of the tail block (so they at least
// double the size of the queue).
//
// chunked_queue<T, 4, 64>: first block 4 elements, second block 8 elements,
// third block 16 elements, fourth block 32 elements,
// all other blocks 64 elements
//
// One can specify a min and max such that small queues will not waste memory
// and large queues will not have too many blocks.
#ifndef ABSL_CONTAINER_CHUNKED_QUEUE_H_
#define ABSL_CONTAINER_CHUNKED_QUEUE_H_
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <new>
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/iterator_traits.h"
#include "absl/base/macros.h"
#include "absl/container/internal/chunked_queue.h"
#include "absl/container/internal/layout.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
template <typename T, size_t BLo = 0, size_t BHi = BLo,
typename Allocator = std::allocator<T>>
class chunked_queue {
public:
static constexpr size_t kBlockSizeMin = (BLo == 0 && BHi == 0) ? 1 : BLo;
static constexpr size_t kBlockSizeMax = (BLo == 0 && BHi == 0) ? 128 : BHi;
private:
static_assert(kBlockSizeMin > 0, "Min block size cannot be zero");
static_assert(kBlockSizeMin <= kBlockSizeMax, "Invalid block size bounds");
using Block = container_internal::ChunkedQueueBlock<T, Allocator>;
using AllocatorTraits = std::allocator_traits<Allocator>;
class iterator_common {
public:
friend bool operator==(const iterator_common& a, const iterator_common& b) {
return a.ptr == b.ptr;
}
friend bool operator!=(const iterator_common& a, const iterator_common& b) {
return !(a == b);
}
protected:
iterator_common() = default;
explicit iterator_common(Block* b)
: block(b), ptr(b->start()), limit(b->limit()) {}
void Incr() {
// If we do not have a next block, make ptr point one past the end of this
// block. If we do have a next block, make ptr point to the first element
// of the next block.
++ptr;
if (ptr == limit && block->next()) *this = iterator_common(block->next());
}
void IncrBy(size_t n) {
while (ptr + n > limit) {
n -= limit - ptr;
*this = iterator_common(block->next());
}
ptr += n;
}
Block* block = nullptr;
T* ptr = nullptr;
T* limit = nullptr;
};
// CT can be either T or const T.
template <typename CT>
class basic_iterator : public iterator_common {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename AllocatorTraits::value_type;
using difference_type = typename AllocatorTraits::difference_type;
using pointer =
typename std::conditional<std::is_const<CT>::value,
typename AllocatorTraits::const_pointer,
typename AllocatorTraits::pointer>::type;
using reference = CT&;
basic_iterator() = default;
// Copy ctor if CT is T.
// Otherwise it's a conversion of iterator to const_iterator.
basic_iterator(const basic_iterator<T>& it) // NOLINT(runtime/explicit)
: iterator_common(it) {}
basic_iterator& operator=(const basic_iterator& other) = default;
reference operator*() const { return *this->ptr; }
pointer operator->() const { return this->ptr; }
basic_iterator& operator++() {
this->Incr();
return *this;
}
basic_iterator operator++(int) {
basic_iterator t = *this;
++*this;
return t;
}
private:
explicit basic_iterator(Block* b) : iterator_common(b) {}
friend chunked_queue;
};
public:
using allocator_type = typename AllocatorTraits::allocator_type;
using value_type = typename AllocatorTraits::value_type;
using size_type = typename AllocatorTraits::size_type;
using difference_type = typename AllocatorTraits::difference_type;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = basic_iterator<T>;
using const_iterator = basic_iterator<const T>;
// Constructs an empty queue.
chunked_queue() : chunked_queue(allocator_type()) {}
// Constructs an empty queue with a custom allocator.
explicit chunked_queue(const allocator_type& alloc)
: alloc_and_size_(alloc) {}
// Constructs a queue with `count` default-inserted elements.
explicit chunked_queue(size_type count,
const allocator_type& alloc = allocator_type())
: alloc_and_size_(alloc) {
resize(count);
}
// Constructs a queue with `count` copies of `value`.
chunked_queue(size_type count, const T& value,
const allocator_type& alloc = allocator_type())
: alloc_and_size_(alloc) {
assign(count, value);
}
// Constructs a queue with the contents of the range [first, last).
template <typename Iter,
typename = std::enable_if_t<
base_internal::IsAtLeastInputIterator<Iter>::value>>
chunked_queue(Iter first, Iter last,
const allocator_type& alloc = allocator_type())
: alloc_and_size_(alloc) {
using Tag = typename std::iterator_traits<Iter>::iterator_category;
RangeInit(first, last, Tag());
}
// Constructs a queue with the contents of the initializer list `list`.
chunked_queue(std::initializer_list<T> list,
const allocator_type& alloc = allocator_type())
: chunked_queue(list.begin(), list.end(), alloc) {}
~chunked_queue();
// Copy constructor.
chunked_queue(const chunked_queue& other)
: chunked_queue(other,
AllocatorTraits::select_on_container_copy_construction(
other.alloc_and_size_.allocator())) {}
// Copy constructor with specific allocator.
chunked_queue(const chunked_queue& other, const allocator_type& alloc)
: alloc_and_size_(alloc) {
for (const_reference item : other) {
push_back(item);
}
}
// Move constructor.
chunked_queue(chunked_queue&& other) noexcept
: head_(other.head_),
tail_(other.tail_),
alloc_and_size_(std::move(other.alloc_and_size_)) {
other.head_ = {};
other.tail_ = {};
other.alloc_and_size_.size = 0;
}
// Replaces contents with those from initializer list `il`.
chunked_queue& operator=(std::initializer_list<T> il) {
assign(il.begin(), il.end());
return *this;
}
// Copy assignment operator.
chunked_queue& operator=(const chunked_queue& other) {
if (this == &other) {
return *this;
}
if (AllocatorTraits::propagate_on_container_copy_assignment::value &&
(alloc_and_size_.allocator() != other.alloc_and_size_.allocator())) {
// Destroy all current elements and blocks with the current allocator,
// before switching this to use the allocator propagated from "other".
DestroyAndDeallocateAll();
alloc_and_size_ = AllocatorAndSize(other.alloc_and_size_.allocator());
}
assign(other.begin(), other.end());
return *this;
}
// Move assignment operator.
chunked_queue& operator=(chunked_queue&& other) noexcept;
// Returns true if the queue contains no elements.
bool empty() const { return alloc_and_size_.size == 0; }
// Returns the number of elements in the queue.
size_t size() const { return alloc_and_size_.size; }
// Returns the maximum number of elements the queue is able to hold.
size_type max_size() const noexcept {
return AllocatorTraits::max_size(alloc_and_size_.allocator());
}
// Resizes the container to contain `new_size` elements.
// If `new_size > size()`, additional default-inserted elements are appended.
// If `new_size < size()`, elements are removed from the end.
void resize(size_t new_size);
// Resizes the container to contain `new_size` elements.
// If `new_size > size()`, additional copies of `value` are appended.
// If `new_size < size()`, elements are removed from the end.
void resize(size_type new_size, const T& value) {
if (new_size > size()) {
size_t to_add = new_size - size();
for (size_t i = 0; i < to_add; ++i) {
push_back(value);
}
} else {
resize(new_size);
}
}
// Requests the removal of unused capacity.
void shrink_to_fit() {
// As an optimization clear() leaves the first block of the chunked_queue
// allocated (but empty). When empty, shrink_to_fit() deallocates the first
// block by swapping it a newly constructed container that has no first
// block.
if (empty()) {
chunked_queue(alloc_and_size_.allocator()).swap(*this);
}
}
// Replaces the contents with copies of those in the range [first, last).
template <typename Iter,
typename = std::enable_if_t<
base_internal::IsAtLeastInputIterator<Iter>::value>>
void assign(Iter first, Iter last) {
auto out = begin();
Block* prev_block = nullptr;
// Overwrite existing elements.
for (; out != end() && first != last; ++first) {
// Track the previous block so we can correctly update tail_ if we stop
// exactly at a block boundary.
if (out.ptr + 1 == out.block->limit()) {
prev_block = out.block;
}
*out = *first;
++out;
}
// If we stopped exactly at the start of a block (meaning the previous block
// was full), we must ensure tail_ points to the end of the previous block,
// not the start of the current (now empty and to be deleted) block.
// This maintains the invariant required by back() which assumes tail_
// never points to the start of a block (unless it's the only block).
if (!empty() && out.block != nullptr && out.ptr == out.block->start() &&
prev_block != nullptr) {
// Delete the current block and all subsequent blocks.
//
// NOTE: Calling EraseAllFrom on an iterator that points to the limit of
// the previous block will not delete any element from the previous block.
iterator prev_block_end(prev_block);
prev_block_end.ptr = prev_block->limit();
EraseAllFrom(prev_block_end);
// Update tail_ to point to the end of the previous block.
tail_ = prev_block_end;
prev_block->set_next(nullptr);
} else {
// Standard erase from the current position to the end.
EraseAllFrom(out);
}
// Append any remaining new elements.
for (; first != last; ++first) {
push_back(*first);
}
}
// Replaces the contents with `count` copies of `value`.
void assign(size_type count, const T& value) {
clear();
for (size_type i = 0; i < count; ++i) {
push_back(value);
}
}
// Replaces the contents with the elements from the initializer list `il`.
void assign(std::initializer_list<T> il) { assign(il.begin(), il.end()); }
// Appends the given element value to the end of the container.
// Invalidates `end()` iterator. References to other elements remain valid.
void push_back(const T& val) { emplace_back(val); }
void push_back(T&& val) { emplace_back(std::move(val)); }
// Appends a new element to the end of the container.
// The element is constructed in-place with `args`.
// Returns a reference to the new element.
// Invalidates `end()` iterator. References to other elements remain valid.
template <typename... A>
T& emplace_back(A&&... args) {
T* storage = AllocateBack();
AllocatorTraits::construct(alloc_and_size_.allocator(), storage,
std::forward<A>(args)...);
return *storage;
}
// Removes the first element of the container.
// Invalidates iterators to the removed element.
// REQUIRES: !empty()
void pop_front();
// Returns a reference to the first element in the container.
// REQUIRES: !empty()
T& front() {
ABSL_HARDENING_ASSERT(!empty());
return *head_;
}
const T& front() const {
ABSL_HARDENING_ASSERT(!empty());
return *head_;
}
// Returns a reference to the last element in the container.
// REQUIRES: !empty()
T& back() {
ABSL_HARDENING_ASSERT(!empty());
return *(&*tail_ - 1);
}
const T& back() const {
ABSL_HARDENING_ASSERT(!empty());
return *(&*tail_ - 1);
}
// Swaps the contents of this queue with `other`.
void swap(chunked_queue& other) noexcept {
using std::swap;
swap(head_, other.head_);
swap(tail_, other.tail_);
if (AllocatorTraits::propagate_on_container_swap::value) {
swap(alloc_and_size_, other.alloc_and_size_);
} else {
// Swap only the sizes; each object keeps its allocator.
//
// (It is undefined behavior to swap between two containers with unequal
// allocators if propagate_on_container_swap is false, so we don't have to
// handle that here like we do in the move-assignment operator.)
ABSL_HARDENING_ASSERT(get_allocator() == other.get_allocator());
swap(alloc_and_size_.size, other.alloc_and_size_.size);
}
}
// Erases all elements from the container.
// Note: Leaves one empty block allocated as an optimization.
// To free all memory, call shrink_to_fit() after calling clear().
void clear();
iterator begin() { return head_; }
iterator end() { return tail_; }
const_iterator begin() const { return head_; }
const_iterator end() const { return tail_; }
const_iterator cbegin() const { return head_; }
const_iterator cend() const { return tail_; }
// Returns the allocator associated with the container.
allocator_type get_allocator() const { return alloc_and_size_.allocator(); }
private:
// Empty base-class optimization: bundle storage for our allocator together
// with a field we had to store anyway (size), via inheriting from the
// allocator, so this allocator instance doesn't consume any storage
// when its type has no data members.
struct AllocatorAndSize : private allocator_type {
explicit AllocatorAndSize(const allocator_type& alloc)
: allocator_type(alloc) {}
const allocator_type& allocator() const { return *this; }
allocator_type& allocator() { return *this; }
size_t size = 0;
};
template <typename Iter>
void RangeInit(Iter first, Iter last, std::input_iterator_tag) {
while (first != last) {
AddTailBlock();
for (; first != last && tail_.ptr != tail_.limit;
++alloc_and_size_.size, ++tail_.ptr, ++first) {
AllocatorTraits::construct(alloc_and_size_.allocator(), tail_.ptr,
*first);
}
}
}
void Construct(T* start, T* limit) {
ABSL_ASSERT(start <= limit);
for (; start != limit; ++start) {
AllocatorTraits::construct(alloc_and_size_.allocator(), start);
}
}
size_t Destroy(T* start, T* limit) {
ABSL_ASSERT(start <= limit);
const size_t n = limit - start;
for (; start != limit; ++start) {
AllocatorTraits::destroy(alloc_and_size_.allocator(), start);
}
return n;
}
T* block_begin(Block* b) const {
return b == head_.block ? head_.ptr : b->start();
}
T* block_end(Block* b) const {
// We have the choice of !b->next or b == tail_.block to determine if b is
// the tail or not. !b->next is usually faster because the caller of
// block_end() is most likely traversing the list of blocks so b->next is
// already fetched into some register.
return !b->next() ? tail_.ptr : b->limit();
}
void AddTailBlock();
size_t NewBlockSize() {
// Double the last block size and bound to [kBlockSizeMin, kBlockSizeMax].
if (!tail_.block) return kBlockSizeMin;
return (std::min)(kBlockSizeMax, 2 * tail_.block->size());
}
T* AllocateBack();
void EraseAllFrom(iterator i);
// Destroys any contained elements and destroys all allocated storage.
// (Like clear(), except this doesn't leave any empty blocks behind.)
void DestroyAndDeallocateAll();
// The set of elements in the queue is the following:
//
// (1) When we have just one block:
// [head_.ptr .. tail_.ptr-1]
// (2) When we have multiple blocks:
// [head_.ptr .. head_.limit-1]
// ... concatenation of all elements from interior blocks ...
// [tail_.ptr .. tail_.limit-1]
//
// Rep invariants:
// When have just one block:
// head_.limit == tail_.limit == &head_.block->element[kBlockSize]
// Always:
// head_.ptr <= head_.limit
// tail_.ptr <= tail_.limit
iterator head_;
iterator tail_;
AllocatorAndSize alloc_and_size_;
};
template <typename T, size_t BLo, size_t BHi, typename Allocator>
constexpr size_t chunked_queue<T, BLo, BHi, Allocator>::kBlockSizeMin;
template <typename T, size_t BLo, size_t BHi, typename Allocator>
constexpr size_t chunked_queue<T, BLo, BHi, Allocator>::kBlockSizeMax;
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline void swap(chunked_queue<T, BLo, BHi, Allocator>& a,
chunked_queue<T, BLo, BHi, Allocator>& b) noexcept {
a.swap(b);
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
chunked_queue<T, BLo, BHi, Allocator>&
chunked_queue<T, BLo, BHi, Allocator>::operator=(
chunked_queue&& other) noexcept {
if (this == &other) {
return *this;
}
DestroyAndDeallocateAll();
if constexpr (AllocatorTraits::propagate_on_container_move_assignment::
value) {
// Take over the storage of "other", along with its allocator.
head_ = other.head_;
tail_ = other.tail_;
alloc_and_size_ = std::move(other.alloc_and_size_);
other.head_ = {};
other.tail_ = {};
other.alloc_and_size_.size = 0;
} else if (get_allocator() == other.get_allocator()) {
// Take over the storage of "other", with which we share an allocator.
head_ = other.head_;
tail_ = other.tail_;
alloc_and_size_.size = other.alloc_and_size_.size;
other.head_ = {};
other.tail_ = {};
other.alloc_and_size_.size = 0;
} else {
// We cannot take over of the storage from "other", since it has a different
// allocator; we're stuck move-assigning elements individually.
for (auto& elem : other) {
push_back(std::move(elem));
}
}
return *this;
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline chunked_queue<T, BLo, BHi, Allocator>::~chunked_queue() {
Block* b = head_.block;
while (b) {
Block* next = b->next();
Destroy(block_begin(b), block_end(b));
Block::Delete(b, &alloc_and_size_.allocator());
b = next;
}
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
void chunked_queue<T, BLo, BHi, Allocator>::resize(size_t new_size) {
while (new_size > size()) {
ptrdiff_t to_add = new_size - size();
if (tail_.ptr == tail_.limit) {
AddTailBlock();
}
T* start = tail_.ptr;
T* limit = (std::min)(tail_.limit, start + to_add);
Construct(start, limit);
tail_.ptr = limit;
alloc_and_size_.size += limit - start;
}
if (size() == new_size) {
return;
}
ABSL_ASSERT(new_size < size());
auto new_end = begin();
new_end.IncrBy(new_size);
ABSL_ASSERT(new_end != end());
EraseAllFrom(new_end);
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline void chunked_queue<T, BLo, BHi, Allocator>::AddTailBlock() {
ABSL_ASSERT(tail_.ptr == tail_.limit);
auto* b = Block::New(NewBlockSize(), &alloc_and_size_.allocator());
if (!head_.block) {
ABSL_ASSERT(!tail_.block);
head_ = iterator(b);
} else {
ABSL_ASSERT(tail_.block);
tail_.block->set_next(b);
}
tail_ = iterator(b);
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline T* chunked_queue<T, BLo, BHi, Allocator>::AllocateBack() {
if (tail_.ptr == tail_.limit) {
AddTailBlock();
}
++alloc_and_size_.size;
return tail_.ptr++;
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline void chunked_queue<T, BLo, BHi, Allocator>::EraseAllFrom(iterator i) {
if (!i.block) {
return;
}
ABSL_ASSERT(i.ptr);
ABSL_ASSERT(i.limit);
alloc_and_size_.size -= Destroy(i.ptr, block_end(i.block));
Block* b = i.block->next();
while (b) {
Block* next = b->next();
alloc_and_size_.size -= Destroy(b->start(), block_end(b));
Block::Delete(b, &alloc_and_size_.allocator());
b = next;
}
tail_ = i;
tail_.block->set_next(nullptr);
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline void chunked_queue<T, BLo, BHi, Allocator>::DestroyAndDeallocateAll() {
Block* b = head_.block;
while (b) {
Block* next = b->next();
Destroy(block_begin(b), block_end(b));
Block::Delete(b, &alloc_and_size_.allocator());
b = next;
}
head_ = iterator();
tail_ = iterator();
alloc_and_size_.size = 0;
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
inline void chunked_queue<T, BLo, BHi, Allocator>::pop_front() {
ABSL_HARDENING_ASSERT(!empty());
ABSL_ASSERT(head_.block);
AllocatorTraits::destroy(alloc_and_size_.allocator(), head_.ptr);
++head_.ptr;
--alloc_and_size_.size;
if (empty()) {
// Reset head and tail to the start of the (only) block.
ABSL_ASSERT(head_.block == tail_.block);
head_.ptr = tail_.ptr = head_.block->start();
return;
}
if (head_.ptr == head_.limit) {
Block* n = head_.block->next();
Block::Delete(head_.block, &alloc_and_size_.allocator());
head_ = iterator(n);
}
}
template <typename T, size_t BLo, size_t BHi, typename Allocator>
void chunked_queue<T, BLo, BHi, Allocator>::clear() {
// NOTE: As an optimization we leave one block allocated.
Block* b = head_.block;
if (!b) {
ABSL_ASSERT(empty());
return;
}
while (b) {
Block* next = b->next();
Destroy(block_begin(b), block_end(b));
if (head_.block != b) {
Block::Delete(b, &alloc_and_size_.allocator());
}
b = next;
}
b = head_.block;
b->set_next(nullptr);
head_ = tail_ = iterator(b);
alloc_and_size_.size = 0;
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_CHUNKED_QUEUE_H_
|