File: BloomFilters.cpp

package info (click to toggle)
abyss 2.2.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 15,640 kB
  • sloc: cpp: 109,409; ansic: 6,510; makefile: 2,194; java: 1,354; sh: 732; perl: 672; haskell: 412; python: 45
file content (352 lines) | stat: -rw-r--r-- 12,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include "BloomFilters.h"

#include "RUtils.h"
#include "RAlgorithmsShort.h"
#include "Common/IOUtil.h"
#include "Common/Options.h"
#include "DataLayer/FastaReader.h"
#include "vendor/nthash/stHashIterator.hpp"
#include "vendor/nthash/ntHashIterator.hpp"

#include "btllib/include/btllib/seq_reader.hpp"

#include <algorithm>
#include <random>
#include <cassert>
#include <cmath>

static std::vector<std::string>
generateSpacedSeedsPatterns(const int count, const int size, const int misses) {
  assert(count < size);
  assert(misses < count);
  assert(misses > 0);

  std::vector<std::string> seeds;
  auto randomEngine = std::mt19937();
  std::vector<int> seedsPermutation;

  for (int i = 0; i < count; i++) {
    seeds.push_back(std::string(size, '1'));
    seedsPermutation.push_back(i);
  }

  for (int i = 0; i < (size + 1) / 2; i++) {
    std::shuffle(seedsPermutation.begin(), seedsPermutation.end(), randomEngine);
    for (int j = 0; j < count; j++) {
      char c = j < misses ? '0' : '1';
      seeds[seedsPermutation[j]][i] = c;
    }
    if (i < size / 2) {
      for (int j = 0; j < count; j++) {
        seeds[count - j - 1][size - i - 1] = seeds[j][i];
      }
    }
  }

  return seeds;
}

void QCSpacedSeedsPatterns(const std::vector<std::string> &patterns) {
  int k = patterns[0].size();

  for (const auto &pattern : patterns) {
    int patternBasesCovered = k;
    bool hasZero = false;
    for (char c : pattern) {
      if (c == '0') {
        hasZero = true;
        patternBasesCovered--;
        break;
      }
    }
    if (opt::verbose && !hasZero) {
      std::cerr << "A spaced seed has no zeros!\n";
    }
    if (opt::verbose && (patternBasesCovered < k * SPACED_SEEDS_QC_MIN_BASES_PATTERN)) {
      std::cerr << "A spaced seed pattern does not cover enough bases!\n";
    }
  }

  auto combinations = genCombinations(SPACED_SEEDS_COUNT, SPACED_SEEDS_MIN_HITS);
  std::string overallErrorCoverage(k, '1');
  int overallErrorsCovered = 0;
  std::string overallBaseCoverage(k, '0');
  int overallBasesCovered = 0;
  std::string worstCombinationCoverage(k, '1');
  int worstCombinationBasesCovered = k;

  for (auto combination : combinations) {
    std::string combinationCoverage(k, '0');
    int combinationBasesCovered = 0;
    for (auto index : combination) {
      const auto &pattern = patterns[index];
      for (unsigned i = 0; i < pattern.size(); i++) {
        if (pattern[i] == '1' && combinationCoverage[i] != '1') {
          combinationCoverage[i] = '1';
          combinationBasesCovered++;
        }
      }
    }
    if (combinationBasesCovered < worstCombinationBasesCovered) {
      worstCombinationCoverage = combinationCoverage;
      worstCombinationBasesCovered = combinationBasesCovered;
    }
    if (opt::verbose && (combinationBasesCovered < combinationCoverage.size() * SPACED_SEEDS_QC_MIN_BASES_COMBINATION)) {
      std::cerr << "A spaced seed combination does not cover enough bases!\n";
    }

    for (unsigned i = 0; i < combinationCoverage.size(); i++) {
      if (combinationCoverage[i] == '0') {
        if (overallErrorCoverage[i] != '0') {
          overallErrorCoverage[i] = '0';
          overallErrorsCovered++;
        }
      } else {
        if (overallBaseCoverage[i] != '1') {
          overallBaseCoverage[i] = '1';
          overallBasesCovered++;
        }
      }
    }
  }

  if (opt::verbose) {
    std::cerr << std::fixed;
    std::cerr << "Worst combination coverage: " << worstCombinationCoverage << '\n';
    std::cerr << "Worst combination bases covered: " << worstCombinationBasesCovered / double(k) * 100.0 << "%\n";
    std::cerr << "Overall base coverage:\n" << overallBaseCoverage << '\n';
    std::cerr << "Bases covered: " << overallBasesCovered / double(k) * 100.0 << "%\n";
    std::cerr << "Overall error coverage:\n" << overallErrorCoverage << '\n';
    std::cerr << "Errors covered: " << overallErrorsCovered / double(k) * 100.0 << "%\n";
    std::cerr << std::defaultfloat << std::endl;
  }

  if (opt::verbose && (overallErrorsCovered < k * SPACED_SEEDS_QC_MIN_ERRORS_OVERALL)) {
    std::cerr << "Spaced seeds do not cover enough error positions!\n\n";
  }
  if (opt::verbose && (overallBasesCovered < k * SPACED_SEEDS_QC_MIN_BASES_OVERALL)) {
    std::cerr << "Spaced seeds do not cover enough base positions!\n\n";
  }
  std::cerr << std::flush;
}

size_t VanillaBloomFilter::getPop() const {
  size_t i, popBF = 0;
  #pragma omp parallel for reduction(+:popBF)
  for (i = 0; i < (m_size + 7) / 8; i++) {
    popBF = popBF + popCnt(m_filter[i]);
  }
  return popBF;
}

void VanillaBloomFilter::loadSequence(const Sequence& sequence) {
  if (sequence.size() >= m_kmerSize) {
#if RMER_LOAD_STEP > 1
    unsigned offset = 0;
#endif
    for (ntHashIterator it(sequence, HASH_NUM, m_kmerSize); it != ntHashIterator::end();)
    {
      insert(*it);
#if RMER_LOAD_STEP > 1
      for (unsigned i = 0; (i < RMER_LOAD_STEP) && (it != ntHashIterator::end()); ++i, ++it, ++offset) {
        if (offset == sequence.size() - m_kmerSize) { insert(*it); }
      }
#else
      ++it;
#endif
    }
  }
}

SpacedSeedsBloomFilter::SpacedSeedsBloomFilter(size_t filterSize, int kmerSize):
    BloomFilter(filterSize, SPACED_SEEDS_COUNT * SPACED_SEEDS_HASH_PER_SEED, kmerSize)
{
  const auto patterns = generateSpacedSeedsPatterns(SPACED_SEEDS_COUNT, kmerSize, SPACED_SEEDS_MISSES);
  for (const auto &pattern : patterns) {
    assert(pattern.size() == getKmerSize());
  }
  if (SPACED_SEEDS_QC) {
    QCSpacedSeedsPatterns(patterns);
  }
  spacedSeeds = stHashIterator::parseSeed(patterns);
}

size_t SpacedSeedsBloomFilter::getPop() const {
  size_t i, popBF = 0;
  #pragma omp parallel for reduction(+:popBF)
  for (i = 0; i < (m_size + 7) / 8; i++) {
    popBF = popBF + popCnt(m_filter[i]);
  }
  return popBF;
}

double SpacedSeedsBloomFilter::getFPR() const {
  const double occupancy = double(getPop()) / double(m_size);
  const double singleSeedFpr = std::pow(occupancy, SPACED_SEEDS_HASH_PER_SEED);
  const double totalFpr = 1 - std::pow(1 - singleSeedFpr, SPACED_SEEDS_COUNT);
  return totalFpr;
}

void SpacedSeedsBloomFilter::loadSequence(const Sequence& sequence) {
  if (sequence.size() >= m_kmerSize) {
#if RMER_LOAD_STEP > 1
    unsigned offset = 0;
#endif
    for (stHashIterator it(sequence, spacedSeeds, SPACED_SEEDS_COUNT, SPACED_SEEDS_HASH_PER_SEED, m_kmerSize);
      it != stHashIterator::end();)
    {
      insert(*it);
#if RMER_LOAD_STEP > 1
      for (unsigned i = 0; (i < RMER_LOAD_STEP) && (it != stHashIterator::end()); ++i, ++it, ++offset) {
        if (offset == sequence.size() - m_kmerSize) { insert(*it); }
      }
#else
      ++it;
#endif
    }
  }
}

static void loadReads(const std::vector<std::string>& readFilepaths, int r) {
  const size_t LOAD_PROGRESS_STEP = 100000;
  const size_t PARALLEL_IO_SIZE = 10;

  size_t kmersPerReadMode = 0;
  size_t kmersPerReadModeCount = 0;
  Histogram kmersPerReadHist;

  size_t threads_per_task = omp_get_max_threads() / PARALLEL_IO_SIZE;
  if (threads_per_task < 1) { threads_per_task = 1; }
  omp_set_nested(1);
  #pragma omp parallel
  #pragma omp single
  {
    int counter = 0;
    for (const auto path : readFilepaths)
    {
      #pragma omp task firstprivate(path)
      {
        assert(!path.empty());
        if (opt::verbose) {
          #pragma omp critical (cerr)
          std::cerr << "Loading reads from `" << path << "'...\n";
        }

        btllib::SeqReader reader(path);
        uint64_t readCount = 0, dropped = 0;
        #pragma omp parallel num_threads(threads_per_task)
        for (btllib::SeqReader::Record record; record = reader.read();) {
          if (int(record.seq.size()) != ReadBatch::current.size) { continue; }
          bool loaded = false;
          size_t qual_threshold_position = 0;
          for (int j = record.qual.size() - 1; j >= 0; j--) {
            if (record.qual[j] >= RMER_QUALITY_THRESHOLD) {
              qual_threshold_position = j;
              break;
            }
          }
          size_t substr_len = std::min(long(r + opt::threshold - 1),
            std::max(long(r + opt::threshold - 1), long(qual_threshold_position + 1)));
          std::string seq = record.seq.substr(0, substr_len);
          if (seq.size() >= g_vanillaBloom->getKmerSize()) {
            #pragma omp critical (kmersPerReadHist)
            kmersPerReadHist.insert(seq.size() - r + 1);

            g_vanillaBloom->loadSequence(seq);
            if (opt::error_correction) {
              g_spacedSeedsBloom->loadSequence(seq);
            }
            loaded = true;
          }
          if (opt::verbose)
          #pragma omp critical (cerr)
          {
            if (!loaded) { dropped++; }
            readCount++;
            if (readCount % LOAD_PROGRESS_STEP == 0)
              std::cerr << "\rLoaded " << readCount
                << " reads into Bloom filter.";
          }
        }
        if (opt::verbose) {
          std::cerr << std::endl;
        }
      }
      counter++;
      if (counter % PARALLEL_IO_SIZE == 0) {
        #pragma omp taskwait
      }
    }
  }

  for (const auto& entry : kmersPerReadHist) {
    if (entry.second > kmersPerReadModeCount) {
      kmersPerReadMode = entry.first;
      kmersPerReadModeCount = entry.second;
    }
  }
  if (opt::verbose) {
    std::cerr << "Kmers per read mode: " << kmersPerReadMode << '\n';
  }
}

VanillaBloomFilter* g_vanillaBloom = nullptr;
SpacedSeedsBloomFilter* g_spacedSeedsBloom = nullptr;

void buildFilters(const std::vector<std::string>& readFilepaths, const int r, const size_t bloomBytesTotal)
{
  assert(bloomBytesTotal > 0);
  try {
      if (opt::verbose) { std::cerr << "Building Bloom filter(s) for r value " << r << '\n'; }

      delete g_vanillaBloom;
      delete g_spacedSeedsBloom;
      
      size_t bloomBitsVanilla = size_t(bloomBytesTotal) * 8;
      size_t bloomBitsSpacedSeeds = 0;

      if (opt::error_correction) {
        double vanillaRatio = VANILLA_TO_SEEDS_MEM_RATIO * double(HASH_NUM) / (double(HASH_NUM) + double(SPACED_SEEDS_COUNT * SPACED_SEEDS_HASH_PER_SEED));
        bloomBitsVanilla = size_t(vanillaRatio * bloomBytesTotal) * 8;
        bloomBitsSpacedSeeds = bloomBytesTotal * 8 - bloomBitsVanilla;
      }
      

      if (opt::verbose > 1) {
        if (opt::error_correction) {
          std::cerr << "Total Bloom filter memory = " << bytesToSI(bloomBytesTotal) << '\n';
          std::cerr << "Vanilla Bloom filter memory = " << bytesToSI(bloomBitsVanilla / 8) << '\n';
          std::cerr << "Spaced seeds Bloom filter memory = " << bytesToSI(bloomBitsSpacedSeeds / 8) << '\n';
        } else {
          std::cerr << "Vanilla Bloom filter memory = " << bytesToSI(bloomBitsVanilla / 8) << '\n';
        }
      }

      g_vanillaBloom = new VanillaBloomFilter(bloomBitsVanilla, r);
      if (opt::error_correction) {
        g_spacedSeedsBloom = new SpacedSeedsBloomFilter(bloomBitsSpacedSeeds, r);
      }

      loadReads(readFilepaths, r);

      if (opt::verbose > 1) {
        const auto vanillaFPR = g_vanillaBloom->getFPR();

        std::cerr << "Vanilla Bloom filter (k = " << std::to_string(g_vanillaBloom->getKmerSize()) << setprecision(3)
          << ") occupancy = " << double(g_vanillaBloom->getPop()) / double(g_vanillaBloom->getFilterSize()) * 100.0 << "%"
          << ", FPR = " << vanillaFPR * 100.0 << "%" << endl;

        if (opt::error_correction) {
          std::cerr << "FPR for base substitution = " <<
            (1 - std::pow(1 - vanillaFPR, 3 * g_vanillaBloom->getKmerSize() / SPACED_SEEDS_COUNT * SPACED_SEEDS_SNP_FRACTION)) * 100.0 << "%" << std::endl;

          std::cerr << "Spaced seeds Bloom filter (k = " << std::to_string(g_spacedSeedsBloom->getKmerSize()) << setprecision(3)
            << ") occupancy = " << double(g_spacedSeedsBloom->getPop()) / double(g_spacedSeedsBloom->getFilterSize()) * 100.0 << "%"
            << ", FPR = " << g_spacedSeedsBloom->getFPR() * 100.0 << "%" << endl;
        }
      }
  } catch (const std::bad_alloc& e) {
    std::cerr << "Bloom filter allocation failed: " << e.what() << '\n';
    exit(EXIT_FAILURE);
  }
}