1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
#include "RAlgorithmsShort.h"
#include "vendor/nthash/stHashIterator.hpp"
#include "vendor/nthash/ntHashIterator.hpp"
#include "btllib/include/btllib/seq_reader.hpp"
#include <omp.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include <map>
#include <unordered_map>
#include <algorithm>
static unsigned char BASES[] = { 'A', 'C', 'T', 'G' };
typedef std::map<long, std::map<long, Support>> SupportMap;
typedef std::map<long, SupportMap> RepeatSupportMap;
long ReadBatch::readsSampleSize = 0;
std::vector<ReadBatch> ReadBatch::batches;
ReadBatch ReadBatch::current(0);
class FractionHistogram : public Histogram {
public:
void insert(double fraction) {
assert(fraction >= 0);
assert(fraction <= 1);
Histogram::insert(int(fraction * 100));
}
friend std::ostream& operator<<(std::ostream& o, const FractionHistogram& h)
{
o << (Histogram&)h;
if (h.size() == 0 || (--h.end())->first != 100) {
o << 100 << "\t0\n";
}
return o;
}
};
class Resolution {
public:
Resolution(const ReadBatch& batch, int r): batch(batch), r(r) {}
RepeatSupportMap repeatSupportMap;
const ReadBatch& batch;
int r;
Histogram findsHistogram;
FractionHistogram fractionFindsHistogram;
Histogram calculatedTestsHistogram;
bool failed = false;
};
static int getMinWindowLength(const int tests, const int repeatSize, const int minMargin) {
return tests - 1 + minMargin + repeatSize + minMargin;
}
static bool windowLongEnough(const int windowSize, const int tests, const int repeatSize, const int minMargin) {
return windowSize >= getMinWindowLength(tests, repeatSize, minMargin);
}
//static int numOfTests(const int repeatSize, const int windowSize, const int minMargin) {
// return windowSize - minMargin - repeatSize - minMargin + 1;
//}
static int getMargin(const int windowSize, const int tests, const int repeatSize, const int minMargin) {
assert(windowLongEnough(windowSize, tests, repeatSize, minMargin));
const int requiredSeqSize = windowSize + tests - 1;
const int margin = (requiredSeqSize - repeatSize + 1) / 2;
assert(margin >= minMargin);
return margin;
}
static bool determineShortReadStats(const std::vector<std::string>& readFilenames) {
if (opt::verbose) {
std::cerr << "Determining read stats..." << std::endl;
}
ReadBatch::batches.clear();
#pragma omp parallel
#pragma omp single
{
for (const auto filename : readFilenames)
#pragma omp task firstprivate(filename)
{
Histogram hist;
std::map<int, Histogram> qualThresholdPositionsHists;
btllib::SeqReader reader(filename);
for (btllib::SeqReader::Record record; (record = reader.read()) && (record.num < READ_STATS_SAMPLE_SIZE);) {
if (record.seq.size() > MAX_READ_SIZE) { continue; }
hist.insert(record.seq.size());
for (int j = record.qual.size() - 1; j >= 0; j--) {
if (record.qual[j] >= RMER_QUALITY_THRESHOLD) {
qualThresholdPositionsHists[record.seq.size()].insert(j);
break;
}
}
}
#pragma omp critical (ReadBatches)
{
for (const auto& i : hist) {
ReadBatch* batch = nullptr;
bool found = false;
for (auto& b : ReadBatch::batches) {
if (b.size == i.first) {
found = true;
batch = &b;
break;
}
}
if (!found) {
ReadBatch::batches.push_back(ReadBatch(i.first));
batch = &(ReadBatch::batches.back());
}
batch->sampleCount += i.second;
auto& qualHist = batch->qualThresholdPositions;
for (const auto& q: qualThresholdPositionsHists[i.first]) {
for (size_t n = 0; n < q.second; n++) {
qualHist.insert(q.first);
}
}
}
}
}
#pragma omp taskwait
}
ReadBatch::readsSampleSize = 0;
for (const auto& batch : ReadBatch::batches) {
ReadBatch::readsSampleSize += batch.sampleCount;
}
std::sort(ReadBatch::batches.begin(), ReadBatch::batches.end(), [] (ReadBatch a, ReadBatch b) { return a.sampleCount > b.sampleCount; });
if (ReadBatch::batches.size() == 0) {
std::cerr << "Insufficient number of short reads. Finishing..." << std::endl;
return false;
}
if (ReadBatch::batches[0].getFractionOfTotal() < READ_BATCH_FRACTION_THRESHOLD) {
std::cerr << "Insufficient reads of same size. Finishing..." << std::endl;
return false;
}
std::vector<ReadBatch> batchesFiltered;
for (const auto& b: ReadBatch::batches) {
if (b.getFractionOfTotal() >= READ_BATCH_FRACTION_THRESHOLD) {
batchesFiltered.push_back(b);
}
}
ReadBatch::batches = batchesFiltered;
std::sort(ReadBatch::batches.begin(), ReadBatch::batches.end(), [] (ReadBatch a, ReadBatch b) { return a.size < b.size; });
if (opt::verbose) {
std::cerr << "Read lengths determined to be: " << std::fixed;
std::cerr << ReadBatch::batches[0].size << " (" << (ReadBatch::batches[0].getFractionOfTotal() * 100.0) << "%)";
for (size_t i = 1; i < ReadBatch::batches.size(); i++) {
std::cerr << ", " << ReadBatch::batches[i].size << " (" << (ReadBatch::batches[i].getFractionOfTotal() * 100.0) << "%)";
}
std::cerr << std::defaultfloat << std::endl;
}
for (size_t i = 0; i < ReadBatch::batches.size(); i++) {
auto& batch = ReadBatch::batches[i];
int r = batch.qualThresholdPositions.median() - opt::threshold + 1;
int prevR = opt::k;
if (i > 0) {
prevR = ReadBatch::batches[i - 1].rValues.back();
}
int steps = 0;
while ((r - prevR > R_VALUES_STEP) && (steps < R_STEPS_MAX)) {
if (r - opt::k > R_MAX_K_DIFF) { r = opt::k + R_MAX_K_DIFF; }
batch.rValues.push_back(r);
r -= R_VALUES_STEP;
steps++;
}
std::reverse(batch.rValues.begin(), batch.rValues.end());
}
if (opt::verbose) {
std::cerr << "Using r values: ";
for (size_t i = 0, j = 0; i < ReadBatch::batches.size(); i++) {
j = 0;
for (auto r : ReadBatch::batches[i].rValues) {
std::cerr << r << " (" << ReadBatch::batches[i].size << + ")";
if ((i < ReadBatch::batches.size() - 1) || (j < ReadBatch::batches[i].rValues.size() - 1)) { std::cerr << ", "; }
j++;
}
}
std::cerr << '\n';
}
return true;
}
static Support testSequence(const Sequence& sequence) {
int found = 0;
int tests = 0;
unsigned r = g_vanillaBloom->getKmerSize();
if (sequence.size() >= r) {
tests = sequence.size() - r + 1;
int offset = 0;
if (opt::error_correction) {
stHashIterator it(sequence, g_spacedSeedsBloom->getSpacedSeeds(), SPACED_SEEDS_COUNT, SPACED_SEEDS_HASH_PER_SEED, r);
for (; it != stHashIterator::end(); ++it, ++offset)
{
auto hitSeeds = g_spacedSeedsBloom->getHitSeeds(*it);
if (hitSeeds.size() > 0) {
it.snp({}, {}, g_vanillaBloom->getHashNum());
if (g_vanillaBloom->contains(*it)) {
found++;
} else {
bool success = false;
for (auto hitSeed : hitSeeds) {
for (auto seedIt = (hitSeed.begin() + std::round(hitSeed.size() * (1.00 - SPACED_SEEDS_SNP_FRACTION))); seedIt != hitSeed.end(); ++seedIt) {
const auto pos = *seedIt;
for (auto base : BASES) {
if (base == (unsigned char)(sequence[offset + pos])) { continue; }
it.snp({ pos }, { base }, g_vanillaBloom->getHashNum());
if (g_vanillaBloom->contains(*it)) {
success = true;
found++;
break;
}
}
if (success) { break; }
}
if (success) { break; }
}
}
}
}
} else {
for (ntHashIterator it(sequence, HASH_NUM, r); it != ntHashIterator::end(); ++it, ++offset)
{
if (g_vanillaBloom->contains(*it)) {
found++;
}
}
}
}
return Support(found, tests);
}
static Support testCombination(const std::string &head, const std::string &repeat, const std::string &tail, const int requestedTests)
{
const auto windowSize = g_vanillaBloom->getKmerSize();
auto plannedTests = requestedTests;
if (plannedTests < opt::min_tests) { plannedTests = opt::min_tests; }
if (plannedTests > opt::min_tests + MAX_TESTS_OFFSET) { return Support(); }
const auto margin = getMargin(windowSize, plannedTests, repeat.size(), MIN_MARGIN);
int possibleTests = head.size() + repeat.size() + tail.size() - windowSize + 1;
if (possibleTests < plannedTests || long(head.size()) < margin || long(tail.size()) < margin) {
return Support();
}
Sequence sequence;
if (possibleTests > plannedTests + 1) {
assert(long(head.size()) > margin || long(tail.size()) > margin);
sequence = head.substr(head.size() - margin) + repeat + tail.substr(0, margin);
} else {
sequence = head + repeat + tail;
}
possibleTests = sequence.size() - windowSize + 1;
assert(plannedTests <= possibleTests);
assert(possibleTests <= plannedTests + 1);
assert(int(sequence.size()) >= MIN_MARGIN + int(repeat.size()) + MIN_MARGIN);
assert(int(sequence.size()) < int(windowSize) * 2);
return testSequence(sequence);
}
static double expectedSpacingBetweenReads(const ContigPath& path) {
const long pathLength = 100000;
const double leftContigBaseCoverage = getContigBaseCoverage(path[0]);
const double rightContigBaseCoverage = getContigBaseCoverage(path[path.size() - 1]);
const double pathBaseCoverage = std::min(leftContigBaseCoverage, rightContigBaseCoverage);
const double pathBases = pathBaseCoverage * (pathLength - opt::k + 1);
double meanReadKmerContribution = 0;
for (const auto& batch : ReadBatch::batches) {
meanReadKmerContribution += batch.getFractionOfTotal() * (batch.size - opt::k + 1);
}
const double baseContributionRatio = ReadBatch::current.getFractionOfTotal() * (ReadBatch::current.size - opt::k + 1) / meanReadKmerContribution;
const double approxNumOfReads = double(pathBases * baseContributionRatio) / double(opt::k * (ReadBatch::current.size - opt::k + 1));
assert(approxNumOfReads > 2);
return double(pathLength - ReadBatch::current.size) / double(approxNumOfReads - 1);
}
static Support determinePathSupport(const ContigPath& path)
{
assert(path.size() >= 3);
const Sequence repeat = getPathSequence(ContigPath(path.begin() + 1, path.end() - 1));
const int repeatSize = repeat.size();
assert(repeatSize >= 2);
const long calculatedTests = std::round(expectedSpacingBetweenReads(path) * COV_APPROX_FORMULA_FACTOR);
assert(calculatedTests >= 0);
long requiredTests = calculatedTests;
if (requiredTests < opt::min_tests) { requiredTests = opt::min_tests; }
const int windowSize = g_vanillaBloom->getKmerSize();
assert(windowSize >= 4);
if (!windowLongEnough(windowSize, requiredTests, repeatSize, MIN_MARGIN)) {
return Support(calculatedTests);
}
const auto &leftContig = path[0];
const auto &rightContig = path[path.size() - 1];
assert(windowSize >= MIN_MARGIN + repeatSize + MIN_MARGIN);
const int leftDistance = distanceBetween(leftContig, path[1]);
const int rightDistance = distanceBetween(path[path.size() - 2], rightContig);
const int margin = getMargin(windowSize, requiredTests, repeat.size(), MIN_MARGIN);
const auto heads = getTreeSequences(leftContig, -leftDistance, margin, false, opt::branching);
const auto tails = getTreeSequences(rightContig, -rightDistance, margin, true, opt::branching);
assert(heads.size() > 0);
assert(tails.size() > 0);
Support maxSupport(calculatedTests);
bool unknown = false;
const long combinations = heads.size() * tails.size();
if (combinations > opt::branching * opt::branching) {
unknown = true;
} else {
if (combinations >= PATH_COMBINATIONS_MULTITHREAD_THRESHOLD) {
bool end = false;
for (const auto head : heads) {
#pragma omp critical (maxSupport)
{
if (unknown) { end = true; }
}
if (end) { break; }
#pragma omp task firstprivate(head) shared(maxSupport, unknown)
{
bool end = false;
for (const auto& tail : tails) {
#pragma omp critical (maxSupport)
{
if (unknown) { end = true; }
}
if (end) { break; }
auto support = testCombination(head, repeat, tail, requiredTests);
#pragma omp critical (maxSupport)
{
if (support.unknown()) {
unknown = true;
end = true;
} else if (support > maxSupport) {
maxSupport = support;
} else if (maxSupport.found == 0 && support.tests > maxSupport.tests) {
maxSupport.tests = support.tests;
}
}
if (end) { break; }
}
}
}
} else {
for (const auto& head : heads) {
if (unknown) { break; }
for (const auto& tail : tails) {
if (unknown) { break; }
auto support = testCombination(head, repeat, tail, requiredTests);
if (support.unknown()) {
unknown = true;
break;
} else if (support > maxSupport) {
maxSupport = support;
} else if (maxSupport.found == 0 && support.tests > maxSupport.tests) {
maxSupport.tests = support.tests;
}
}
}
}
}
if (combinations >= PATH_COMBINATIONS_MULTITHREAD_THRESHOLD) {
#pragma omp taskwait
}
if (unknown) {
return Support(calculatedTests);
}
maxSupport.calculatedTests = calculatedTests;
return maxSupport;
}
static SupportMap
buildRepeatSupportMap(const ContigNode &repeat)
{
SupportMap supportMap;
bool unknown = false;
in_edge_iterator inIt, inLast;
for (std::tie(inIt, inLast) = in_edges(repeat, g_contigGraph);
inIt != inLast; ++inIt)
{
const auto intig = source(*inIt, g_contigGraph);
out_edge_iterator outIt, outLast;
for (std::tie(outIt, outLast) = out_edges(repeat, g_contigGraph);
outIt != outLast; ++outIt)
{
const auto outig = target(*outIt, g_contigGraph);
auto support = determinePathSupport({ intig, repeat, outig });
supportMap[intig.index()][outig.index()] = support;
if (support.unknown()) {
unknown = true;
}
}
}
if (unknown) {
for (std::tie(inIt, inLast) = in_edges(repeat, g_contigGraph);
inIt != inLast; ++inIt)
{
const auto intig = source(*inIt, g_contigGraph);
out_edge_iterator outIt, outLast;
for (std::tie(outIt, outLast) = out_edges(repeat, g_contigGraph);
outIt != outLast; ++outIt)
{
const auto outig = target(*outIt, g_contigGraph);
supportMap[intig.index()][outig.index()].reset();
}
}
}
return supportMap;
}
static void updateStats(Resolution& resolution, long &pathsKnown, long& pathsUnknown,
const SupportMap& repeatSupportMap,
bool inHistSample)
{
for (const auto &intigIdxAndOutigsSupp : repeatSupportMap)
{
for (const auto &outigIdxAndSupp : intigIdxAndOutigsSupp.second)
{
const auto &support = outigIdxAndSupp.second;
if (support.unknown()) {
pathsUnknown++;
} else {
assert(support.found >= 0);
assert(support.tests >= 0);
pathsKnown++;
if (inHistSample) {
resolution.findsHistogram.insert(support.found);
resolution.fractionFindsHistogram.insert(double(support.found) / double(support.tests));
}
}
assert(support.calculatedTests >= 0);
if (inHistSample) {
resolution.calculatedTestsHistogram.insert(support.calculatedTests);
}
}
}
}
static bool isSmallRepeat(const ContigNode& node)
{
unsigned r = g_vanillaBloom->getKmerSize();
return (!get(vertex_removed, g_contigGraph, node) && !node.sense() &&
windowLongEnough(r, opt::min_tests, getContigSize(node), MIN_MARGIN) &&
(in_degree(node, g_contigGraph) > 0 && out_degree(node, g_contigGraph) > 0) &&
(in_degree(node, g_contigGraph) > 1 || out_degree(node, g_contigGraph) > 1));
}
static Resolution resolveRepeats()
{
long total = (num_vertices(g_contigGraph) - num_vertices_removed(g_contigGraph)) / 2;
long repeats = 0, pathsKnown = 0, pathsUnknown = 0;
long pathsSupported = 0, pathsUnsupported = 0;
progressStart("Path resolution (r = " +
std::to_string(g_vanillaBloom->getKmerSize()) +
")", total * 2);
Resolution resolution(ReadBatch::current, g_vanillaBloom->getKmerSize());
Graph::vertex_iterator vertexStart, vertexEnd;
boost::tie(vertexStart, vertexEnd) = vertices(g_contigGraph);
iteratorMultithreading(vertexStart, vertexEnd,
[&] (const ContigNode &node) {
if (!get(vertex_removed, g_contigGraph, node)) {
if (isSmallRepeat(node)) {
return true;
} else {
#pragma omp critical (cerr)
progressUpdate();
return false;
}
}
return false;
},
[&] (const ContigNode &node) {
bool inHistSample;
bool skip = false;
#pragma omp critical(resolution)
{
repeats++;
inHistSample = (repeats <= HIST_SAMPLE_SIZE);
skip = (repeats > REPEAT_CASES_LIMIT);
}
if (!skip) {
auto supportMap = buildRepeatSupportMap(node);
#pragma omp critical(resolution)
{
resolution.repeatSupportMap[node.index()] = supportMap;
updateStats(resolution, pathsKnown, pathsUnknown,
supportMap, inHistSample);
}
}
#pragma omp critical (cerr)
progressUpdate();
});
if (repeats > 0 && pathsKnown > 0) {
for (const auto &findsAndCount : resolution.findsHistogram) {
const auto &finds = findsAndCount.first;
const auto &count = findsAndCount.second;
if (finds >= opt::threshold) {
pathsSupported += count;
} else {
pathsUnsupported += count;
}
}
double sampleFactor = double(pathsKnown) / double(pathsSupported + pathsUnsupported);
pathsSupported *= sampleFactor;
pathsUnsupported *= sampleFactor;
if (opt::verbose) {
std::cerr << std::fixed;
std::cerr << "Small repeats = " << repeats << "/" << total
<< " (" << double(repeats) / total * 100.0 << "%)\n";
std::cerr << "Known support paths = " << pathsKnown << " / " << (pathsKnown + pathsUnknown)
<< " (" << double(pathsKnown) / (pathsKnown + pathsUnknown) * 100.0 << "%)\n";
std::cerr << "Unknown support paths = " << pathsUnknown << " / " << (pathsKnown + pathsUnknown)
<< " (" << double(pathsUnknown) / (pathsKnown + pathsUnknown) * 100.0 << "%)\n";
std::cerr << "Supported paths ~= " << pathsSupported << "/" << pathsKnown
<< " (" << double(pathsSupported) / pathsKnown * 100.0 << "%)\n";
std::cerr << "Unsupported paths ~= " << pathsUnsupported << "/" << pathsKnown
<< " (" << double(pathsUnsupported) / pathsKnown * 100.0 << "%)\n";
std::cerr << std::defaultfloat << std::flush;
}
if (double(pathsSupported) / double(pathsKnown) < SUPPORTED_PATHS_MIN) {
std::cerr << "Insufficient support found. Is something wrong with the data?\n";
resolution.failed = true;
}
} else {
std::cerr << "No small junctions were found!\n";
resolution.failed = true;
}
return resolution;
}
struct OldEdge {
OldEdge(ContigNode u, ContigNode v):
u(u), v(v) {}
ContigNode u, v;
};
struct NewEdge {
NewEdge(ContigNode u, ContigNode v, Distance distance):
u(u), v(v), distance(distance) {}
ContigNode u, v;
Distance distance;
};
struct NewVertex {
NewVertex(ContigNode original, ContigNode node):
original(original), node(node) {}
ContigNode original, node;
};
class RepeatInstance {
public:
RepeatInstance(const ContigNode instance,
const ContigNode original,
const std::vector<ContigNode> originalIntigs,
const std::vector<ContigNode> originalOutigs):
instance(instance),
original(original),
originalIntigs(originalIntigs),
originalOutigs(originalOutigs) {}
bool inOriginalIntigs(const ContigNode &node) const {
return std::find(originalIntigs.begin(), originalIntigs.end(), node)
!= originalIntigs.end();
}
bool inOriginalOutigs(const ContigNode &node) const {
return std::find(originalOutigs.begin(), originalOutigs.end(), node)
!= originalOutigs.end();
}
RepeatInstance getReverse() const {
std::vector<ContigNode> originalIntigsReverse;
for (auto originalOutig : originalOutigs) {
originalIntigsReverse.push_back(originalOutig ^ true);
}
std::vector<ContigNode> originalOutigsReverse;
for (auto originalIntig : originalIntigs) {
originalOutigsReverse.push_back(originalIntig ^ true);
}
return RepeatInstance(instance ^ true, original ^ true,
originalIntigsReverse, originalOutigsReverse);
}
const ContigNode instance;
const ContigNode original;
std::vector<ContigNode> originalIntigs;
std::vector<ContigNode> originalOutigs;
std::vector<std::reference_wrapper<const RepeatInstance>> intigsInstances;
std::vector<std::reference_wrapper<const RepeatInstance>> outigsInstances;
};
static void processGraph(const Resolution &resolution,
ImaginaryContigPaths& supportedPaths,
ImaginaryContigPaths& unsupportedPaths)
{
progressStart("New paths and vertices setup", resolution.repeatSupportMap.size() * 3);
assert(!resolution.failed);
std::vector<OldEdge> edges2remove;
std::vector<NewEdge> edges2add;
std::vector<NewVertex> vertices2add;
std::map<int, std::vector<RepeatInstance>> repeatInstancesMap;
size_t lastId = num_vertices(g_contigGraph) / 2;
const auto start = resolution.repeatSupportMap.begin();
const auto end = resolution.repeatSupportMap.end();
#ifdef _OPENMP
int threads = omp_get_num_threads();
#else
int threads = 1;
#endif
// 1
iteratorMultithreading(start, end,
[&] (const std::pair<int, SupportMap> &repeatSupport) {
(void)repeatSupport;
return true;
},
[&] (const std::pair<int, SupportMap> &repeatSupport) {
const auto repeat = ContigNode(repeatSupport.first);
const auto &supportMap = repeatSupport.second;
#pragma omp critical (repeatInstancesMap)
{
repeatInstancesMap.emplace(repeat.index(), std::vector<RepeatInstance>());
repeatInstancesMap.emplace((repeat ^ true).index(), std::vector<RepeatInstance>());
}
for (const auto &intigIdxAndOutigsSupp : supportMap) {
const auto intig = ContigNode(intigIdxAndOutigsSupp.first);
for (const auto &outigIdxAndSupp : intigIdxAndOutigsSupp.second) {
const auto outig = ContigNode(outigIdxAndSupp.first);
const auto &support = outigIdxAndSupp.second;
int dist1 = distanceBetween(intig, repeat);
int dist2 = distanceBetween(repeat, outig);
ImaginaryContigPath path = { { intig, 0 }, { repeat, dist1 }, { outig, dist2 } };
if (support.good()) {
#pragma omp critical (supportedPaths)
supportedPaths.insert(path);
} else {
#pragma omp critical (unsupportedPaths)
unsupportedPaths.insert(path);
#pragma omp critical (supportedPaths)
{
if (supportedPaths.find(path) != supportedPaths.end()) {
supportedPaths.erase(path);
}
}
}
}
}
#pragma omp critical (cerr)
progressUpdate();
}, std::min(4, threads));
// 2
for (auto it = start; it != end; it++) {
const std::pair<int, SupportMap> &repeatSupport = *it;
const auto repeat = ContigNode(repeatSupport.first);
const auto &supportMap = repeatSupport.second;
assert(repeatInstancesMap.find(repeat.index()) != repeatInstancesMap.end());
assert(repeatInstancesMap.find((repeat ^ true).index()) != repeatInstancesMap.end());
auto &repeatInstances = repeatInstancesMap.at(repeat.index());
auto &repeatInstancesReverse = repeatInstancesMap.at((repeat ^ true).index());
assert(repeatInstances.size() == 0);
assert(repeatInstancesReverse.size() == 0);
for (const auto &intigIdxAndOutigsSupp : supportMap) {
const auto intig = ContigNode(intigIdxAndOutigsSupp.first);
const auto &outigsSupp = intigIdxAndOutigsSupp.second;
std::vector<ContigNode> supportedOutigs;
for(const auto &outigIdxAndSupp : outigsSupp) {
const auto &outig = ContigNode(outigIdxAndSupp.first);
const auto &support = outigIdxAndSupp.second;
if (support.good()) {
supportedOutigs.push_back(outig);
}
}
bool matched = false;
for (auto &instance : repeatInstances) {
if (instance.originalOutigs.size() == supportedOutigs.size()) {
matched = true;
for (const auto &outig: supportedOutigs) {
bool found = false;
for (const auto &instanceOutig : instance.originalOutigs) {
if (outig == instanceOutig) {
found = true;
break;
}
}
if (!found) {
matched = false;
break;
}
}
}
if (matched) {
instance.originalIntigs.push_back(intig);
break;
}
}
if (!matched) {
if (supportedOutigs.size() > 0) {
std::vector<ContigNode> intigs = { intig };
if (repeatInstances.size() == 0) {
repeatInstances.push_back(RepeatInstance(repeat, repeat, intigs, supportedOutigs));
} else {
ContigNode repeatCopy = ContigNode(lastId++, repeat.sense());
repeatInstances.push_back(RepeatInstance(repeatCopy, repeat, intigs, supportedOutigs));
}
}
}
}
if (repeatInstances.size() > 0) {
std::set<int> intigIdxs;
for (const auto &instance : repeatInstances) {
for (const auto &intig : instance.originalIntigs) {
assert(intigIdxs.find(intig.index()) == intigIdxs.end());
intigIdxs.insert(intig.index());
}
assert(instance.originalOutigs.size() > 0);
repeatInstancesReverse.push_back(instance.getReverse());
}
} else {
auto instance = RepeatInstance(repeat, repeat, {}, {});
repeatInstances.push_back(instance);
repeatInstancesReverse.push_back(instance.getReverse());
}
progressUpdate();
}
// 3
iteratorMultithreading(start, end,
[&] (const std::pair<int, SupportMap> &repeatSupport) {
(void)repeatSupport;
return true;
},
[&] (const std::pair<int, SupportMap> &repeatSupport) {
const auto repeat = ContigNode(repeatSupport.first);
auto &repeatInstances = repeatInstancesMap.at(repeat.index());
std::list<RepeatInstance> tempInstances;
for (auto &instance : repeatInstances) {
for (const auto &intig : instance.originalIntigs) {
if (repeatInstancesMap.find(intig.index()) != repeatInstancesMap.end()) {
const auto &intigInstances = repeatInstancesMap.at(intig.index());
for (const auto &intigInstance : intigInstances) {
if (intigInstance.inOriginalOutigs(repeat)) {
instance.intigsInstances.push_back(intigInstance);
}
}
} else {
tempInstances.push_back(RepeatInstance(intig, intig, {}, {}));
instance.intigsInstances.push_back(tempInstances.back());
}
}
for (const auto &outig : instance.originalOutigs) {
if (repeatInstancesMap.find(outig.index()) != repeatInstancesMap.end()) {
const auto &outigInstances = repeatInstancesMap.at(outig.index());
for (const auto &outigInstance : outigInstances) {
if (outigInstance.inOriginalIntigs(repeat)) {
instance.outigsInstances.push_back(outigInstance);
}
}
} else {
tempInstances.push_back(RepeatInstance(outig, outig, {}, {}));
instance.outigsInstances.push_back(tempInstances.back());
}
}
if (instance.instance == instance.original) {
in_edge_iterator inIt, inLast;
for (std::tie(inIt, inLast) = in_edges(instance.original, g_contigGraph);
inIt != inLast; ++inIt)
{
#pragma omp critical (edges2remove)
edges2remove.push_back(OldEdge(source(*inIt, g_contigGraph), instance.original));
}
out_edge_iterator outIt, outLast;
for (std::tie(outIt, outLast) = out_edges(instance.original, g_contigGraph);
outIt != outLast; ++outIt)
{
#pragma omp critical (edges2remove)
edges2remove.push_back(OldEdge(instance.original, target(*outIt, g_contigGraph)));
}
} else {
#pragma omp critical (vertices2add)
vertices2add.push_back(NewVertex(instance.original, instance.instance));
}
for (const RepeatInstance &intigInstance : instance.intigsInstances) {
#pragma omp critical (edges2add)
edges2add.push_back(NewEdge(intigInstance.instance, instance.instance,
get(edge_bundle, g_contigGraph, edge(intigInstance.original, instance.original, g_contigGraph).first)));
}
for (const RepeatInstance &outigInstance : instance.outigsInstances) {
#pragma omp critical (edges2add)
edges2add.push_back(NewEdge(instance.instance, outigInstance.instance,
get(edge_bundle, g_contigGraph, edge(instance.original, outigInstance.original, g_contigGraph).first)));
}
}
#pragma omp critical (cerr)
progressUpdate();
});
std::sort(vertices2add.begin(), vertices2add.end(),
[] (const NewVertex& v1, const NewVertex& v2) {
return v1.node.index() < v2.node.index();
});
std::sort(edges2add.begin(), edges2add.end(),
[] (const NewEdge &e1, const NewEdge &e2) {
return (e1.u.index() < e2.u.index()) || (e1.u.index() == e2.u.index() && e1.v.index() < e2.v.index());
});
int modifications = edges2remove.size() + vertices2add.size() + edges2add.size();
progressStart("Graph modification", modifications);
g_contigNames.unlock();
for (const auto &oldEdge : edges2remove) {
if (g_contigGraph.edge(oldEdge.u, oldEdge.v).second) {
remove_edge(oldEdge.u, oldEdge.v, g_contigGraph);
}
progressUpdate();
}
for (const auto &newVertex : vertices2add) {
assert(in_degree(newVertex.original, g_contigGraph) == 0);
assert(out_degree(newVertex.original, g_contigGraph) == 0);
assert(g_contigSequences.size() == newVertex.node.index());
assert(g_contigComments.size() == newVertex.node.id());
g_contigSequences.push_back(getContigSequence(newVertex.original));
g_contigSequences.push_back(getContigSequence(newVertex.original ^ true));
std::string name = createContigName();
put(vertex_name, g_contigGraph, newVertex.node, name);
add_vertex(get(vertex_bundle, g_contigGraph, newVertex.original), g_contigGraph);
g_contigComments.push_back(getContigComment(newVertex.original));
assert(in_degree(newVertex.node, g_contigGraph) == 0);
assert(out_degree(newVertex.node, g_contigGraph) == 0);
progressUpdate();
}
for (const auto &newEdge : edges2add) {
if (!g_contigGraph.edge(newEdge.u, newEdge.v).second) {
g_contigGraph.add_edge(newEdge.u, newEdge.v, newEdge.distance);
}
progressUpdate();
}
g_contigNames.lock();
}
void writeHistograms(const Resolution& resolution, const std::string& prefix, int subiteration) {
if (opt::verbose) {
std::cerr << "Writing algorithm histograms..." << std::flush;
}
std::string findsFilename = prefix + "-r" + std::to_string(resolution.r) + "-" + std::to_string(subiteration + 1) + "-finds.tsv";
std::ofstream findsFile(findsFilename.c_str());
findsFile << resolution.findsHistogram;
std::string fractionFindsFilename = prefix + "-r" + std::to_string(resolution.r) + "-" + std::to_string(subiteration + 1) + "-percent-finds.tsv";
std::ofstream fractionFindsFile(fractionFindsFilename.c_str());
fractionFindsFile << resolution.fractionFindsHistogram;
std::string calculatedTestsFilename = prefix + "-r" + std::to_string(resolution.r) + "-" + std::to_string(subiteration + 1) + "-calculated-tests.tsv";
std::ofstream calculatedTestsFile(calculatedTestsFilename.c_str());
calculatedTestsFile << resolution.calculatedTestsHistogram;
if (opt::verbose) {
std::cerr << " Done!" << std::endl;
}
}
void
resolveShort(const std::vector<std::string>& readFilepaths,
ImaginaryContigPaths& supportedPaths,
ImaginaryContigPaths& unsupportedPaths)
{
if (!determineShortReadStats(readFilepaths)) {
return;
}
if (opt::verbose) { std::cerr << "\nRunning resolution algorithm...\n"; }
assert(g_contigSequences.size() > 0);
assert(g_contigSequences.size() / 2 == g_contigComments.size());
assert(ReadBatch::batches.size() > 0);
std::vector<std::pair<int, Histogram>> histograms;
for (auto batch : ReadBatch::batches) {
ReadBatch::current = batch;
for (int r : ReadBatch::current.rValues) {
if (int(r) < int(opt::k)) {
std::cerr << "r value " << r << "(" << ReadBatch::current.size << ") is too short - skipping." << std::endl;
continue;
}
if (opt::verbose) { std::cerr << "\nRead size = " << batch.size << ", r = " << r << " ...\n\n"; }
buildFilters(readFilepaths, r, opt::bloomSize);
for (size_t j = 0; j < MAX_SUBITERATIONS; j++) {
if (opt::verbose) { std::cerr << "\nSubiteration " << j + 1 << "...\n"; }
int unsupportedCountPrev = unsupportedPaths.size();
Resolution resolution = resolveRepeats();
if (!resolution.failed) {
processGraph(resolution, supportedPaths, unsupportedPaths);
assembleContigs();
if (!opt::histPrefix.empty()) {
writeHistograms(resolution, opt::histPrefix, j);
}
}
int newUnsupportedCount = unsupportedPaths.size() - unsupportedCountPrev;
assert(newUnsupportedCount >= 0);
if (newUnsupportedCount == 0) { break; }
}
}
}
if (opt::verbose) { std::cerr << "Resolution algorithm done.\n\n"; }
}
|