1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
//////////////////////////////////////////////////////////////////////////////
// Smith_waterman implementation, with modification, to find sequence overlap
//
// Written by Rong She (rshe@bcgsc.ca)
// Last modified: Jul 7, 2010
//////////////////////////////////////////////////////////////////////////////
#include "smith_waterman.h"
#include "Sequence.h"
#include "Align/Options.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cfloat> // for DBL_MAX
#include <iostream>
using namespace std;
namespace opt {
/** The score of a match. */
int match = 5;
/** The score of a mismatch. */
int mismatch = -4;
/** gap open penalty */
int gap_open = -12;
/** gap extend penalty */
int gap_extend = -4;
}
/** Print the specified alignment. */
static ostream& printAlignment(ostream& out,
const string& aseq, const string& bseq,
unsigned alignPos[], SMAlignment align)
{
unsigned astart = alignPos[0], aend = alignPos[1] + 1;
unsigned bstart = alignPos[2], bend = alignPos[3] + 1;
assert(aend == aseq.size());
assert(bstart == 0);
(void)aend; (void)bstart;
out << aseq.substr(0, astart) << align.query_align << '\n'
<< string(astart, ' ');
for (unsigned i = 0; i < align.match_align.size(); i++) {
char a = align.query_align[i],
b = align.target_align[i],
c = align.match_align[i];
out << (c == a || c == b ? '.' : c);
}
return out << '\n' << string(astart, ' ')
<< align.target_align << bseq.substr(bend) << '\n';
}
/** Index comparison functor. */
template<class T>
struct index_cmp {
const T arr;
index_cmp(const T arr) : arr(arr) {}
bool operator()(const int a, const int b) const { return arr[a] > arr[b]; }
};
/** Return whether the characters a and b match.
* @param c [out] the consensus character
*/
static bool isMatch(char a, char b, char& c)
{
if (a == b) {
c = a;
} else if (toupper(a) == toupper(b)) {
c = islower(a) || islower(b) ? tolower(a) : a;
} else if (a == 'N' || a == 'n') {
c = b;
} else if (b == 'N' || b == 'n') {
c = a;
} else {
c = ambiguityOr(a, b);
return ambiguityIsSubset(a, b);
}
return true;
}
/** Return the score of the alignment of a and b. */
static int matchScore(const char a, const char b)
{
char consensus;
return isMatch(a, b, consensus) ? opt::match : opt::mismatch;
}
/** Return the score of a gap, either newly opened or extended. */
static int gapScore(bool prev_is_gap)
{
return prev_is_gap ? opt::gap_extend : opt::gap_open;
}
//the backtrack step in smith_waterman
unsigned Backtrack(const int i_max, const int j_max, int** I_i, int** I_j,
const string& seq_a, const string& seq_b, SMAlignment& align, unsigned* align_pos)
{
// Backtracking from H_max
int current_i=i_max,current_j=j_max;
int next_i=I_i[current_i][current_j];
int next_j=I_j[current_i][current_j];
string consensus_a(""), consensus_b(""), match("");
unsigned num_of_match = 0;
while(((current_i!=next_i) || (current_j!=next_j)) && (next_j!=0) && (next_i!=0)){
if(next_i==current_i) {
consensus_a += '-'; //deletion in A
match += tolower(seq_b[current_j-1]);
consensus_b += seq_b[current_j-1]; //b must be some actual char, cannot be '-' aligns with '-'!
}
else {
consensus_a += seq_a[current_i-1]; // match/mismatch in A
if(next_j==current_j) {
consensus_b += '-'; // deletion in B
match += tolower(seq_a[current_i-1]);
}
else {
consensus_b += seq_b[current_j-1]; // match/mismatch in B
char consensus_char;
if (isMatch(seq_a[current_i-1], seq_b[current_j-1],
consensus_char)) {
match += consensus_char;
num_of_match++;
}
else {
match += ambiguityOr(
seq_a[current_i-1], seq_b[current_j-1]);
}
}
}
current_i = next_i;
current_j = next_j;
next_i=I_i[current_i][current_j];
next_j=I_j[current_i][current_j];
}
//check whether the alignment is what we want (pinned at the ends), modified version of SW (i_max is already fixed)
if (current_j > 1)
return 0;
//record the last one
consensus_a += seq_a[current_i-1];
consensus_b += seq_b[current_j-1];
char consensus_char;
if (isMatch(seq_a[current_i-1], seq_b[current_j-1],
consensus_char)) {
match += consensus_char;
num_of_match++;
}
else {
match += ambiguityOr(seq_a[current_i-1], seq_b[current_j-1]);
}
align_pos[0] = current_i-1;
align_pos[2] = current_j-1;
align_pos[1] = i_max-1;
align_pos[3] = j_max-1;
reverse(consensus_a.begin(), consensus_a.end());
reverse(consensus_b.begin(), consensus_b.end());
reverse(match.begin(), match.end());
align.query_align = consensus_a;
align.match_align = match;
align.target_align = consensus_b;
return num_of_match;
}
/* This is the Smith-Waterman algorithm (a variation of
* Needleman-Wunsch algorithm), finds one optimal local alignment
* Modified to find overlap of seq_a and seq_b (alignment that is
* pinned at the end of seq_a and beginning of seq_b).
* Actually, this should be a variation of needleman algorithm, that
* looks for a global alignment, but without penalizing overhangs...
* and make sure the alignment is end-to-end (end of seqA to beginning
* of seqB).
*/
void alignOverlap(const string& seq_a, const string& seq_b, unsigned seq_a_start_pos,
vector<overlap_align>& overlaps, bool multi_align, bool verbose)
{
// get the actual lengths of the sequences
int N_a = seq_a.length();
int N_b = seq_b.length();
// initialize H
int i, j;
double** H;
int **I_i, **I_j;
H = new double*[N_a+1];
I_i = new int*[N_a+1];
I_j = new int*[N_a+1];
bool** V = new bool*[N_a+1];
for(i=0;i<=N_a;i++){
H[i] = new double[N_b+1];
I_i[i] = new int[N_b+1];
I_j[i] = new int[N_b+1];
H[i][0]=0; //only need to initialize first row and first column
I_i[i][0] = i-1;
V[i] = new bool[N_b+1];
V[i][0] = true; //valid start
}
for (j = 0; j <= N_b; j++) {
H[0][j] = 0; //initialize first column
I_j[0][j] = j-1;
V[0][j] = false; //wrong start, not overlap
}
V[0][0] = true;
for(i=1;i<=N_a;i++){
for(j=1;j<=N_b;j++){
char a = seq_a[i-1], b = seq_b[j-1];
double scores[3] = {
V[i-1][j-1] ? H[i-1][j-1] + matchScore(a, b)
: -DBL_MAX, // match or mismatch
V[i-1][j] ? H[i-1][j] + gapScore(I_j[i-1][j] == j)
: -DBL_MAX, // deletion in sequence A
V[i][j-1] ? H[i][j-1] + gapScore(I_i[i][j-1] == i)
: -DBL_MAX // deletion in sequence B
};
double* pMax = max_element(scores, scores + 3);
H[i][j] = *pMax;
switch (pMax - scores) {
case 0: // match or mismatch
I_i[i][j] = i-1;
I_j[i][j] = j-1;
break;
case 1: // deletion in sequence A
I_i[i][j] = i-1;
I_j[i][j] = j;
break;
case 2: // deletion in sequence B
I_i[i][j] = i;
I_j[i][j] = j-1;
break;
}
V[i][j] = H[i][j] == -DBL_MAX ? false : true;
}
}
// search H for the maximal score
unsigned num_of_match = 0;
double H_max = 0.;
int i_max=N_a, j_max;
int* j_max_indexes=new int[N_b]; //this array holds the index of j_max in H[N_a]
for (j=0; j<N_b; j++)
j_max_indexes[j]=j+1;
//sort H[N_a], store the sorted index in j_max_indexes
sort(j_max_indexes, j_max_indexes+N_b, index_cmp<double*>(H[N_a]));
//find ALL overlap alignments, starting from the highest score j_max
j = 0;
bool found = false;
while (j < N_b) {
j_max = j_max_indexes[j];
H_max = H[N_a][j_max];
if (H_max == 0)
break;
SMAlignment align;
unsigned align_pos[4];
num_of_match = Backtrack(i_max, j_max, I_i, I_j, seq_a, seq_b, align, align_pos);
if (num_of_match) {
overlaps.push_back(overlap_align(seq_a_start_pos+align_pos[0], align_pos[3], align.match_align, num_of_match));
if (!found) {
if (verbose)
printAlignment(cerr, seq_a, seq_b,
align_pos, align);
found = true;
if (!multi_align
|| (j+1 < N_b
&& H[N_a][j_max_indexes[j+1]] < H_max))
break;
}
}
j++;
}
delete [] j_max_indexes;
for(i=0;i<=N_a;i++){
delete [] H[i];
delete [] I_i[i];
delete [] I_j[i];
delete [] V[i];
}
delete [] H;
delete [] I_i;
delete [] I_j;
delete [] V;
}
|