1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
#ifndef HISTOGRAM_H
#define HISTOGRAM_H 1
#include "Common/Exception.h"
#include "StringUtil.h" // for toEng
#include "VectorUtil.h" // for make_vector
#include <cassert>
#include <climits> // for INT_MAX
#include <cmath>
#include <istream>
#include <map>
#include <ostream>
#include <string>
#include <vector>
/** A histogram of type T, which is int be default.
* A histogram may be implemented as a multiset. This class aims
* to provide a similar interface to a multiset.
*/
class Histogram
{
typedef int T;
typedef size_t size_type;
typedef std::map<T, size_type> Map;
typedef long long unsigned accumulator;
public:
typedef Map::const_iterator const_iterator;
Histogram() { }
/** Construct a histogram of the specified elements. */
template <class InputIterator>
Histogram(InputIterator first, InputIterator last)
{
for (InputIterator it = first; it != last; ++it)
insert(*it);
}
/** Construct a histogram from a vector, where the index into the
* vector is the sample, and the value at that index is the number
* of times that sample was observed.
*/
explicit Histogram(std::vector<size_type> v)
{
for (T i = 0; i < (T)v.size(); i++)
if (v[i] > 0)
m_map.insert(std::make_pair(i, v[i]));
}
void insert(T value) { m_map[value]++; }
void insert(T value, size_type count) { m_map[value] += count; }
size_type count(T value) const
{
Map::const_iterator iter = m_map.find(value);
return iter == m_map.end() ? 0 : iter->second;
}
/** Return the number of elements in the range [lo,hi]. */
size_type count(T lo, T hi) const
{
assert(lo <= hi);
size_type n = 0;
Map::const_iterator last = m_map.upper_bound(hi);
for (Map::const_iterator it = m_map.lower_bound(lo);
it != last; ++it)
n += it->second;
return n;
}
T minimum() const
{
return empty() ? 0 : m_map.begin()->first;
}
T maximum() const
{
return empty() ? 0 : m_map.rbegin()->first;
}
bool empty() const { return m_map.empty(); }
size_type size() const
{
size_type n = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it)
n += it->second;
return n;
}
/** Return the sum. */
accumulator sum() const
{
accumulator total = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it)
total += (accumulator)it->first * it->second;
return total;
}
/** Return the mean. */
double mean() const
{
accumulator n = 0, total = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it) {
n += it->second;
total += (accumulator)it->first * it->second;
}
return (double)total / n;
}
double variance() const
{
accumulator n = 0, total = 0, squares = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it) {
n += it->second;
total += (accumulator)it->first * it->second;
squares += (accumulator)it->first * it->first
* it->second;
}
return (squares - (double)total * total / n) / n;
}
double sd() const
{
return sqrt(variance());
}
/** Return the specified percentile. */
T percentile(float p) const
{
size_type x = (size_type)ceil(p * size());
size_type n = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it) {
n += it->second;
if (n >= x)
return it->first;
}
return maximum();
}
/** Return the median. */
T median() const
{
return percentile(0.5);
}
/** Return the largest weight in the arg min of partial sum of
* weights. */
T argMin(accumulator x) const
{
accumulator total = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it) {
total += (accumulator)it->first * it->second;
if (total >= x)
return it->first;
}
return maximum();
}
/** Return the specified weighted percentile. */
T weightedPercentile(float p) const
{
return argMin((accumulator)ceil(p * sum()));
}
/** Return the expected value */
double expectedValue() const
{
double value = 0;
accumulator acc = sum();
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); it++) {
value += (double)it->first * it->first
* it->second / acc;
}
return value;
}
/** Return the N50. */
T n50() const { return weightedPercentile(0.5); }
/** Return the first local minimum or zero if a minimum is not
* found. */
T firstLocalMinimum() const
{
const unsigned SMOOTHING = 4;
assert(!empty());
Map::const_iterator minimum = m_map.begin();
size_type count = 0;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it) {
if (it->second <= minimum->second) {
minimum = it;
count = 0;
} else if (++count >= SMOOTHING)
break;
}
if (minimum->first == maximum())
return 0;
return minimum->first;
}
void eraseNegative()
{
for (Map::iterator it = m_map.begin(); it != m_map.end();)
if (it->first < 0)
m_map.erase(it++);
else
++it;
}
/** Remove noise from the histogram. Noise is defined as a
* sample x where h[x-1] == 0 && h[x+1] == 0.
*/
void removeNoise()
{
for (Map::iterator it = m_map.begin(); it != m_map.end();) {
if (m_map.count(it->first - 1) == 0
&& m_map.count(it->first + 1) == 0
&& m_map.size() > 1)
m_map.erase(it++);
else
++it;
}
}
/** Remove outliers from the histogram. A sample is an outlier
* if it is outside the range [Q1 - k*(Q3-Q1), Q3 + k*(Q3-Q1)]
* where k = 20.
*/
void removeOutliers()
{
T q1 = percentile(0.25);
T q3 = percentile(0.75);
T l = q1 - 20 * (q3 - q1);
T u = q3 + 20 * (q3 - q1);
for (Map::iterator it = m_map.begin(); it != m_map.end();) {
if (it->first < l || it->first > u)
m_map.erase(it++);
else
++it;
}
}
/** Negate each element of this histogram. */
Histogram negate() const
{
Histogram h;
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it)
h.m_map.insert(std::make_pair(-it->first, it->second));
return h;
}
Histogram trimFraction(double fraction) const;
Histogram trimLow(T threshold) const;
typedef std::vector<accumulator> Bins;
Bins bin(unsigned n) const;
std::string barplot() const;
std::string barplot(unsigned nbins) const;
const_iterator begin() const { return m_map.begin(); }
const_iterator end() const { return m_map.end(); }
/** Return a vector representing this histogram. */
std::vector<size_type> toVector() const
{
assert(minimum() >= 0);
#if 0
std::vector<size_type> v(maximum()+1);
#else
// CommLayer::reduce requires the arrays have the same size.
std::vector<size_type> v(65536);
assert(maximum() < (T)v.size());
#endif
for (Map::const_iterator it = m_map.begin();
it != m_map.end(); ++it)
v[it->first] = it->second;
return v;
}
friend std::ostream& operator<<(std::ostream& o,
const Histogram& h)
{
for (Map::const_iterator it = h.m_map.begin();
it != h.m_map.end(); ++it)
o << it->first << '\t' << it->second << '\n';
return o;
}
friend std::istream& operator>>(std::istream& in, Histogram& h)
{
Histogram::T value;
size_type count;
while (in >> value >> count)
h.insert(value, count);
assert(in.eof());
return in;
}
private:
Map m_map;
};
namespace std {
template<>
inline void swap(Histogram&, Histogram&) NOEXCEPT { assert(false); }
}
/** Print assembly contiguity statistics header. */
static inline std::ostream& printContiguityStatsHeader(
std::ostream& out,
unsigned minSize,
const std::string& sep = "\t",
const long long unsigned expSize = 0)
{
out << "n" << sep
<< "n:" << minSize << sep
<< "L50" << sep;
if (expSize > 0)
out << "LG50" << sep
<< "NG50" << sep;
return out << "min" << sep
<< "N75" << sep
<< "N50" << sep
<< "N25" << sep
<< "E-size" << sep
<< "max" << sep
<< "sum" << sep
<< "name" << '\n';
}
/** Print assembly contiguity statistics. */
static inline std::ostream& printContiguityStats(
std::ostream& out, const Histogram& h0,
unsigned minSize, bool printHeader = true,
const std::string& sep = "\t",
const long long unsigned expSize = 0)
{
Histogram h = h0.trimLow(minSize);
if (printHeader)
printContiguityStatsHeader(out, minSize, sep, expSize);
unsigned n50 = h.n50();
out << toEng(h0.size()) << sep
<< toEng(h.size()) << sep
<< toEng(h.count(n50, INT_MAX)) << sep;
long long unsigned sum = h.sum();
if (expSize > 0) {
unsigned ng50;
if (sum < expSize/2)
ng50 = h.minimum();
else
ng50 = h.argMin(sum - expSize/2);
out << toEng(h.count(ng50, INT_MAX)) << sep
<< toEng(ng50) << sep;
}
return out
<< toEng(h.minimum()) << sep
<< toEng(h.weightedPercentile(1 - 0.75)) << sep
<< toEng(n50) << sep
<< toEng(h.weightedPercentile(1 - 0.25)) << sep
<< toEng((unsigned)h.expectedValue()) << sep
<< toEng(h.maximum()) << sep
<< toEng(sum);
}
/** Pass assembly contiguity statistics -- values only. */
static inline std::vector<int> passContiguityStatsVal(
const Histogram& h0, unsigned minSize, const long long unsigned expSize = 0)
{
#if _SQL
Histogram h = h0.trimLow(minSize);
unsigned n50 = h.n50();
long long unsigned sum = h.sum();
std::vector<int> vec = make_vector<int>()
<< h0.size()
<< h.size()
<< h.count(n50, INT_MAX)
<< h.minimum()
<< h.weightedPercentile(1 - 0.75)
<< n50
<< h.weightedPercentile(1 - 0.25)
<< (unsigned)h.expectedValue()
<< h.maximum()
<< sum;
if (expSize > 0) {
unsigned ng50;
if (sum < expSize/2)
ng50 = h.minimum();
else
ng50 = h.argMin(sum - expSize/2);
vec.push_back(h.count(ng50, INT_MAX));
vec.push_back(ng50);
}
return vec;
#else
(void)h0;
(void)minSize;
(void)expSize;
return make_vector<int>();
#endif
}
#endif
|