1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
#include "config.h"
#include "Kmer.h"
#include "Common/Options.h"
#include "HashFunction.h"
#include <algorithm>
#include <cstring>
using namespace std;
/** The size of a k-mer. This variable is static and is shared by all
* instances. */
unsigned Kmer::s_length;
/** The size of a k-mer in bytes. */
unsigned Kmer::s_bytes;
static unsigned seqIndexToByteNumber(unsigned seqIndex);
static unsigned seqIndexToBaseIndex(unsigned seqIndex);
static uint8_t getBaseCode(const char* pSeq,
unsigned byteNum, unsigned index);
static void setBaseCode(char* pSeq,
unsigned byteNum, unsigned index, uint8_t base);
/** Construct a k-mer from a string. */
Kmer::Kmer(const Sequence& seq)
{
assert(seq.length() == s_length);
memset(m_seq, 0, NUM_BYTES);
const char* p = seq.data();
for (unsigned i = 0; i < s_length; i++)
set(i, baseToCode(*p++));
}
/** Compare two k-mer. */
int Kmer::compare(const Kmer& other) const
{
return memcmp(m_seq, other.m_seq, bytes());
}
/** Compute a hash-like value of the packed sequence over the first 16
* bases and the reverse complement of the last 16 bases
* The reverse complement of the last 16 bases is used so that a
* sequence and its reverse complement will hash to the same value.
* @todo make this faster
*/
unsigned Kmer::getCode() const
{
/* At k=19, this hash function always returns an even number due
* to the sequence and its reverse complement overlapping when the
* xor is calculated. A more general solution is needed. */
const unsigned NUM_BYTES
= s_length < 8 ? 1
: s_length < 20 ? s_length/8
: 4;
Kmer rc = *this;
rc.reverseComplement();
const unsigned prime = 101;
unsigned sum = 0;
for (unsigned i = 0; i < NUM_BYTES; i++)
sum = prime * sum + (m_seq[i] ^ rc.m_seq[i]);
return sum;
}
size_t Kmer::getHashCode() const
{
// Hash numbytes - 1 to avoid getting different hash values for
// the same sequence for n % 4 != 0 sequences.
return hashmem(m_seq, bytes() - 1);
}
/** Return the string representation of this sequence. */
Sequence Kmer::str() const
{
Sequence s;
s.reserve(s_length);
for (unsigned i = 0; i < s_length; i++)
s.push_back(codeToBase(at(i)));
return s;
}
/** Swap the positions of four bases. */
static const uint8_t swapBases[256] = {
0x00, 0x40, 0x80, 0xc0, 0x10, 0x50, 0x90, 0xd0,
0x20, 0x60, 0xa0, 0xe0, 0x30, 0x70, 0xb0, 0xf0,
0x04, 0x44, 0x84, 0xc4, 0x14, 0x54, 0x94, 0xd4,
0x24, 0x64, 0xa4, 0xe4, 0x34, 0x74, 0xb4, 0xf4,
0x08, 0x48, 0x88, 0xc8, 0x18, 0x58, 0x98, 0xd8,
0x28, 0x68, 0xa8, 0xe8, 0x38, 0x78, 0xb8, 0xf8,
0x0c, 0x4c, 0x8c, 0xcc, 0x1c, 0x5c, 0x9c, 0xdc,
0x2c, 0x6c, 0xac, 0xec, 0x3c, 0x7c, 0xbc, 0xfc,
0x01, 0x41, 0x81, 0xc1, 0x11, 0x51, 0x91, 0xd1,
0x21, 0x61, 0xa1, 0xe1, 0x31, 0x71, 0xb1, 0xf1,
0x05, 0x45, 0x85, 0xc5, 0x15, 0x55, 0x95, 0xd5,
0x25, 0x65, 0xa5, 0xe5, 0x35, 0x75, 0xb5, 0xf5,
0x09, 0x49, 0x89, 0xc9, 0x19, 0x59, 0x99, 0xd9,
0x29, 0x69, 0xa9, 0xe9, 0x39, 0x79, 0xb9, 0xf9,
0x0d, 0x4d, 0x8d, 0xcd, 0x1d, 0x5d, 0x9d, 0xdd,
0x2d, 0x6d, 0xad, 0xed, 0x3d, 0x7d, 0xbd, 0xfd,
0x02, 0x42, 0x82, 0xc2, 0x12, 0x52, 0x92, 0xd2,
0x22, 0x62, 0xa2, 0xe2, 0x32, 0x72, 0xb2, 0xf2,
0x06, 0x46, 0x86, 0xc6, 0x16, 0x56, 0x96, 0xd6,
0x26, 0x66, 0xa6, 0xe6, 0x36, 0x76, 0xb6, 0xf6,
0x0a, 0x4a, 0x8a, 0xca, 0x1a, 0x5a, 0x9a, 0xda,
0x2a, 0x6a, 0xaa, 0xea, 0x3a, 0x7a, 0xba, 0xfa,
0x0e, 0x4e, 0x8e, 0xce, 0x1e, 0x5e, 0x9e, 0xde,
0x2e, 0x6e, 0xae, 0xee, 0x3e, 0x7e, 0xbe, 0xfe,
0x03, 0x43, 0x83, 0xc3, 0x13, 0x53, 0x93, 0xd3,
0x23, 0x63, 0xa3, 0xe3, 0x33, 0x73, 0xb3, 0xf3,
0x07, 0x47, 0x87, 0xc7, 0x17, 0x57, 0x97, 0xd7,
0x27, 0x67, 0xa7, 0xe7, 0x37, 0x77, 0xb7, 0xf7,
0x0b, 0x4b, 0x8b, 0xcb, 0x1b, 0x5b, 0x9b, 0xdb,
0x2b, 0x6b, 0xab, 0xeb, 0x3b, 0x7b, 0xbb, 0xfb,
0x0f, 0x4f, 0x8f, 0xcf, 0x1f, 0x5f, 0x9f, 0xdf,
0x2f, 0x6f, 0xaf, 0xef, 0x3f, 0x7f, 0xbf, 0xff
};
#if MAX_KMER > 96
# include <bitset>
typedef bitset<2 * MAX_KMER> Seq;
#else
# define SEQ_WORDS ((Kmer::NUM_BYTES + 7)/8)
# define SEQ_BITS (64 * SEQ_WORDS)
# define SEQ_FULL_WORDS ((int)Kmer::NUM_BYTES/8)
# define SEQ_ODD_BYTES (Kmer::NUM_BYTES - 8*SEQ_FULL_WORDS)
/** A sequence of bits of length SEQ_BITS. */
struct Seq {
uint64_t x[SEQ_WORDS];
/** Return the number of bits in this sequence. */
static unsigned size() { return SEQ_BITS; }
/** Flip all the bits. */
void flip()
{
for (unsigned i = 0; i < SEQ_WORDS; i++)
x[i] = ~x[i];
}
/** Shift right by the specified number of bits. */
void operator>>=(uint8_t n)
{
if (n == 0)
return;
#if MAX_KMER <= 32
x[0] >>= n;
#elif MAX_KMER <= 64
uint64_t x0 = x[0], x1 = x[1];
if (n < 64) {
x[0] = x0 >> n;
x[1] = x1 >> n | x0 << (64 - n);
} else {
x[0] = 0;
x[1] = x0 >> (n - 64);
}
#elif MAX_KMER <= 96
uint64_t x0 = x[0], x1 = x[1], x2 = x[2];
if (n < 64) {
x[0] = x0 >> n;
x[1] = x1 >> n | x0 << (64 - n);
x[2] = x2 >> n | x1 << (64 - n);
} else if (n == 64) {
x[0] = 0;
x[1] = x0;
x[2] = x1;
} else if (n < 128) {
n -= 64;
x[0] = 0;
x[1] = x0 >> n;
x[2] = x1 >> n | x0 << (64 - n);
} else {
n -= 128;
x[0] = 0;
x[1] = 0;
x[2] = x0 >> n;
}
#else
# error
#endif
}
};
#endif
/** Load with appropriate endianness for shifting. */
static Seq load(const uint8_t *src)
{
Seq seq;
#if MAX_KMER > 96
# if WORDS_BIGENDIAN
const size_t *s = reinterpret_cast<const size_t*>(src);
size_t *d = reinterpret_cast<size_t*>(&seq + 1);
copy(s, s + Kmer::NUM_BYTES/sizeof(size_t), reverse_iterator<size_t*>(d));
# else
uint8_t *d = reinterpret_cast<uint8_t*>(&seq);
memcpy(d, src, sizeof seq);
reverse(d, d + sizeof seq);
# endif
#else
uint64_t *px = seq.x;
const uint8_t *p = src;
for (int i = 0; i < SEQ_FULL_WORDS; i++) {
*px++ = (uint64_t)p[0] << 56
| (uint64_t)p[1] << 48
| (uint64_t)p[2] << 40
| (uint64_t)p[3] << 32
| (uint64_t)p[4] << 24
| (uint64_t)p[5] << 16
| (uint64_t)p[6] << 8
| (uint64_t)p[7] << 0;
p += 8;
}
if (SEQ_ODD_BYTES > 0) {
uint64_t x = 0;
if (SEQ_ODD_BYTES > 0) x |= (uint64_t)p[0] << 56;
if (SEQ_ODD_BYTES > 1) x |= (uint64_t)p[1] << 48;
if (SEQ_ODD_BYTES > 2) x |= (uint64_t)p[2] << 40;
if (SEQ_ODD_BYTES > 3) x |= (uint64_t)p[3] << 32;
if (SEQ_ODD_BYTES > 4) x |= (uint64_t)p[4] << 24;
if (SEQ_ODD_BYTES > 5) x |= (uint64_t)p[5] << 16;
if (SEQ_ODD_BYTES > 6) x |= (uint64_t)p[6] << 8;
if (SEQ_ODD_BYTES > 7) x |= (uint64_t)p[7] << 0;
*px = x;
}
#endif
return seq;
}
/**
* Reverse the bytes by storing them in the reverse order of
* loading, and reverse the words in the same fashion.
*/
static void storeReverse(uint8_t *dest, const Seq seq)
{
#if MAX_KMER > 96
# if WORDS_BIGENDIAN
const size_t *s = reinterpret_cast<const size_t*>(&seq);
size_t *d = reinterpret_cast<size_t*>(dest);
copy(s, s + Kmer::NUM_BYTES/sizeof(size_t),
reverse_iterator<size_t*>(d + Kmer::NUM_BYTES/sizeof(size_t)));
reverse(dest, dest + Kmer::NUM_BYTES);
# else
memcpy(dest, &seq, Kmer::NUM_BYTES);
# endif
#else
const uint64_t *px = &seq.x[SEQ_WORDS-1];
# if WORDS_BIGENDIAN
for (int i = 0; i < SEQ_FULL_WORDS; i++) {
dest[0] = *px >> 0;
dest[1] = *px >> 8;
dest[2] = *px >> 16;
dest[3] = *px >> 24;
dest[4] = *px >> 32;
dest[5] = *px >> 40;
dest[6] = *px >> 48;
dest[7] = *px >> 56;
dest += 8;
px--;
}
# else
uint64_t *d = (uint64_t*)dest;
for (int i = 0; i < SEQ_FULL_WORDS; i++)
*d++ = *px--;
dest = (uint8_t*)d;
# endif
if (SEQ_ODD_BYTES > 0) dest[0] = *px >> 0;
if (SEQ_ODD_BYTES > 1) dest[1] = *px >> 8;
if (SEQ_ODD_BYTES > 2) dest[2] = *px >> 16;
if (SEQ_ODD_BYTES > 3) dest[3] = *px >> 24;
if (SEQ_ODD_BYTES > 4) dest[4] = *px >> 32;
if (SEQ_ODD_BYTES > 5) dest[5] = *px >> 40;
if (SEQ_ODD_BYTES > 6) dest[6] = *px >> 48;
if (SEQ_ODD_BYTES > 7) dest[7] = *px >> 56;
#endif
}
/** Reverse-complement this sequence. */
void Kmer::reverseComplement()
{
Seq seq = load((uint8_t*)m_seq);
// Complement the bits.
if (!opt::colourSpace)
seq.flip();
// Shift the bits flush to the right of the double word.
seq >>= seq.size() - 2*s_length;
storeReverse((uint8_t*)m_seq, seq);
// Reverse the pairs of bits withing a byte.
unsigned numBytes = bytes();
for (unsigned i = 0; i < numBytes; i++)
m_seq[i] = swapBases[(uint8_t)m_seq[i]];
}
bool Kmer::isCanonical() const
{
for (unsigned i = 0, j = s_length - 1;
i < s_length / 2 + s_length % 2; i++, j--) {
uint8_t base = getBaseCode(m_seq,
seqIndexToByteNumber(i), seqIndexToBaseIndex(i));
uint8_t rcBase = 0x3 & ~getBaseCode(m_seq,
seqIndexToByteNumber(j), seqIndexToBaseIndex(j));
if (base == rcBase)
continue;
return rcBase > base;
}
return true;
}
void Kmer::canonicalize()
{
if (!isCanonical())
reverseComplement();
}
void Kmer::setLastBase(extDirection dir, uint8_t base)
{
set(dir == SENSE ? s_length - 1 : 0, base);
}
/** Shift the sequence left and append a new base to the end.
* @return the base shifted out
*/
uint8_t Kmer::shiftAppend(uint8_t base)
{
unsigned numBytes = bytes();
uint8_t shiftIn = base;
for(int i = numBytes - 1; i >= 0; i--)
{
unsigned index = (unsigned)i == numBytes - 1
? seqIndexToBaseIndex(s_length - 1) : 3;
shiftIn = leftShiftByte(m_seq, i, index, shiftIn);
}
return shiftIn;
}
/** Shift the sequence right and prepend a new base at the front.
* @return the base shifted out
*/
uint8_t Kmer::shiftPrepend(uint8_t base)
{
unsigned numBytes = bytes();
unsigned lastBaseByte = seqIndexToByteNumber(s_length - 1);
unsigned lastBaseIndex = seqIndexToBaseIndex(s_length - 1);
// save the last base (which gets shifted out)
uint8_t lastBase = getBaseCode(m_seq,
lastBaseByte, lastBaseIndex);
// Zero the last base, which is required by compare.
setBaseCode(m_seq, lastBaseByte, lastBaseIndex, 0);
uint8_t shiftIn = base;
for(unsigned i = 0; i <= numBytes - 1; i++)
{
// index is always zero
unsigned index = 0;
shiftIn = rightShiftByte(m_seq, i, index, shiftIn);
}
return lastBase;
}
uint8_t Kmer::leftShiftByte(char* pSeq,
unsigned byteNum, unsigned index, uint8_t base)
{
// save the first base
uint8_t outBase = (pSeq[byteNum] >> 6) & 0x3;
// shift left one position
pSeq[byteNum] <<= 2;
// Set the new base
setBaseCode(pSeq, byteNum, index, base);
return outBase;
}
uint8_t Kmer::rightShiftByte(char* pSeq,
unsigned byteNum, unsigned index, uint8_t base)
{
// save the last base
uint8_t outBase = pSeq[byteNum] & 0x3;
// shift right one position
pSeq[byteNum] >>= 2;
// add the new base
setBaseCode(pSeq, byteNum, index, base);
return outBase;
}
//Set a base by byte number/ sub index
// beware, this does not check for out of bounds access
static void setBaseCode(char* pSeq,
unsigned byteNum, unsigned index, uint8_t base)
{
// shift the value into position
unsigned shiftValue = 2*(3 - index);
base <<= shiftValue;
// clear the value
uint8_t mask = 0x3;
mask <<= shiftValue;
mask = ~mask;
pSeq[byteNum] &= mask;
// set the appropriate value with an OR
pSeq[byteNum] |= base;
}
/** Return the base at the specified index. */
uint8_t Kmer::at(unsigned i) const
{
assert(i < s_length);
return getBaseCode(m_seq,
seqIndexToByteNumber(i), seqIndexToBaseIndex(i));
}
/** Set the base at the specified index. */
void Kmer::set(unsigned i, uint8_t base)
{
assert(i < s_length);
setBaseCode(m_seq,
seqIndexToByteNumber(i), seqIndexToBaseIndex(i), base);
}
// get a base code by the byte number and sub index
static uint8_t getBaseCode(const char* pSeq,
unsigned byteNum, unsigned index)
{
unsigned shiftLen = 2 * (3 - index);
return (pSeq[byteNum] >> shiftLen) & 0x3;
}
static unsigned seqIndexToByteNumber(unsigned seqIndex)
{
return seqIndex / 4;
}
static unsigned seqIndexToBaseIndex(unsigned seqIndex)
{
return seqIndex % 4;
}
/** Return true if this sequence is a palindrome. */
bool Kmer::isPalindrome() const
{
return s_length % 2 == 1 && !opt::colourSpace ? false
: *this == ::reverseComplement(*this);
}
/** Return true if the length k-1 subsequence is a palindrome. */
bool Kmer::isPalindrome(extDirection dir) const
{
if (s_length % 2 == 0 && !opt::colourSpace)
return false;
Kmer seq(*this);
if (dir == SENSE)
seq.shiftAppend(0);
else
seq.setLastBase(SENSE, 0);
Kmer rc(*this);
rc.reverseComplement();
if (dir == SENSE)
rc.setLastBase(SENSE, 0);
else
rc.shiftAppend(0);
return seq == rc;
}
|