1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
#include "Estimate.h"
#include "Histogram.h"
#include "IOUtil.h"
#include "MLE.h"
#include "PMF.h"
#include "SAM.h"
#include "Uncompress.h"
#include "Graph/Options.h" // for opt::k
#include <algorithm>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <getopt.h>
#include <iomanip>
#include <iostream>
#include <limits> // for numeric_limits
#include <vector>
#if _OPENMP
# include <omp.h>
#endif
#include "DataBase/Options.h"
#include "DataBase/DB.h"
using namespace std;
#define PROGRAM "DistanceEst"
DB db;
static const char VERSION_MESSAGE[] =
PROGRAM " (" PACKAGE_NAME ") " VERSION "\n"
"Written by Jared Simpson and Shaun Jackman.\n"
"\n"
"Copyright 2014 Canada's Michael Smith Genome Sciences Centre\n";
static const char USAGE_MESSAGE[] =
"Usage: " PROGRAM " -k<kmer> -s<seed-length> -n<npairs> [OPTION]... HIST [PAIR]\n"
"Estimate distances between contigs using paired-end alignments.\n"
"\n"
" Arguments:\n"
"\n"
" HIST distribution of fragments size\n"
" PAIR alignments between contigs\n"
"\n"
" Options:\n"
"\n"
" --mind=N minimum distance between contigs [-(k-1)]\n"
" --maxd=N maximum distance between contigs\n"
" --fr force the orientation to forward-reverse\n"
" --rf force the orientation to reverse-forward\n"
" -k, --kmer=N set --mind to -(k-1) bp\n"
" -l, --min-align=N the minimal alignment size [1]\n"
" -n, --npairs=NPAIRS minimum number of pairs\n"
" -s, --seed-length=L minimum length of the seed contigs\n"
" -q, --min-mapq=N ignore alignments with mapping quality\n"
" less than this threshold [10]\n"
" -o, --out=FILE write result to FILE\n"
" --mle use the MLE [default]\n"
" (maximum likelihood estimator)\n"
" --median use the difference of the population median\n"
" and the sample median\n"
" --mean use the difference of the population mean\n"
" and the sample mean\n"
" --dist output the graph in dist format [default]\n"
" --dot output the graph in GraphViz format\n"
" --gv output the graph in GraphViz format\n"
" --gfa output the graph in GFA2 format\n"
" --gfa2 output the graph in GFA2 format\n"
" -j, --threads=N use N parallel threads [1]\n"
" -v, --verbose display verbose output\n"
" --help display this help and exit\n"
" --version output version information and exit\n"
" --db=FILE specify path of database repository in FILE\n"
" --library=NAME specify library NAME for sqlite\n"
" --strain=NAME specify strain NAME for sqlite\n"
" --species=NAME specify species NAME for sqlite\n"
"\n"
"Report bugs to <" PACKAGE_BUGREPORT ">.\n";
/** Which estimator to use. See opt::method. */
enum { MLE, MEAN, MEDIAN };
namespace opt {
string db;
dbVars metaVars;
unsigned k; // used by Estimate.h
/** Output graph format. */
int format = DIST;
/** Minimum distance between contigs. */
static int minDist = numeric_limits<int>::min();
/** Maximum distance between contigs. */
static int maxDist = numeric_limits<int>::max();
static unsigned seedLen;
static unsigned npairs;
static unsigned minMapQ = 10;
/** Reverse-forward mate pair orientation. */
static int rf = -1;
/** Which estimator to use. */
static int method = MLE;
static int verbose;
static string out;
static int threads = 1;
}
static const char shortopts[] = "j:k:l:n:o:q:s:v";
enum { OPT_HELP = 1, OPT_VERSION,
OPT_MIND, OPT_MAXD, OPT_FR, OPT_RF,
OPT_DB, OPT_LIBRARY, OPT_STRAIN, OPT_SPECIES
};
//enum { OPT_HELP = 1, OPT_VERSION,
// OPT_MIND, OPT_MAXD, OPT_FR, OPT_RF
//};
static const struct option longopts[] = {
{ "dist", no_argument, &opt::format, DIST, },
{ "dot", no_argument, &opt::format, DOT, },
{ "gv", no_argument, &opt::format, DOT, },
{ "gfa", no_argument, &opt::format, GFA2, },
{ "gfa2", no_argument, &opt::format, GFA2, },
{ "fr", no_argument, &opt::rf, false },
{ "rf", no_argument, &opt::rf, true },
{ "min-align", required_argument, NULL, 'l' },
{ "mind", required_argument, NULL, OPT_MIND },
{ "maxd", required_argument, NULL, OPT_MAXD },
{ "mle", no_argument, &opt::method, MLE },
{ "median", no_argument, &opt::method, MEDIAN },
{ "mean", no_argument, &opt::method, MEAN },
{ "kmer", required_argument, NULL, 'k' },
{ "npairs", required_argument, NULL, 'n' },
{ "out", required_argument, NULL, 'o' },
{ "min-mapq", required_argument, NULL, 'q' },
{ "seed-length", required_argument, NULL, 's' },
{ "threads", required_argument, NULL, 'j' },
{ "verbose", no_argument, NULL, 'v' },
{ "help", no_argument, NULL, OPT_HELP },
{ "version", no_argument, NULL, OPT_VERSION },
{ "db", required_argument, NULL, OPT_DB },
{ "library", required_argument, NULL, OPT_LIBRARY },
{ "strain", required_argument, NULL, OPT_STRAIN },
{ "species", required_argument, NULL, OPT_SPECIES },
{ NULL, 0, NULL, 0 }
};
/** A collection of aligned read pairs. */
typedef vector<SAMRecord> Pairs;
/** Estimate the distance between two contigs using the difference of
* the population mean and the sample mean.
* @param numPairs [out] the number of pairs that agree with the
* expected distribution
* @return the estimated distance
*/
static int estimateDistanceUsingMean(
const std::vector<int>& samples, const PMF& pmf,
unsigned& numPairs)
{
Histogram h(samples.begin(), samples.end());
int d = (int)round(pmf.mean() - h.mean());
// Count the number of samples that agree with the distribution.
unsigned n = 0;
for (Histogram::const_iterator it = h.begin();
it != h.end(); ++it)
if (pmf[it->first + d] > pmf.minProbability())
n += it->second;
numPairs = n;
return d;
}
/** Estimate the distance between two contigs using the difference of
* the population median and the sample median.
* @param numPairs [out] the number of pairs that agree with the
* expected distribution
* @return the estimated distance
*/
static int estimateDistanceUsingMedian(
const std::vector<int>& samples, const PMF& pmf,
unsigned& numPairs)
{
Histogram h(samples.begin(), samples.end());
int d = (int)round(pmf.median() - h.median());
// Count the number of samples that agree with the distribution.
unsigned n = 0;
for (Histogram::const_iterator it = h.begin();
it != h.end(); ++it)
if (pmf[it->first + d] > pmf.minProbability())
n += it->second;
numPairs = n;
return d;
}
/** Global variable to track a recommended minAlign parameter */
unsigned g_recMA;
static struct {
/* Fragment stats are considered only for fragments aligning
* to different contigs, and where the contig is >=opt::seedLen. */
unsigned total_frags;
unsigned dup_frags;
} stats;
/** Estimate the distance between two contigs.
* @param numPairs [out] the number of pairs that agree with the
* expected distribution
* @return the estimated distance
*/
static int estimateDistance(unsigned len0, unsigned len1,
const Pairs& pairs, const PMF& pmf,
unsigned& numPairs)
{
// The provisional fragment sizes are calculated as if the contigs
// were perfectly adjacent with no overlap or gap.
typedef vector<pair<int, int> > Fragments;
Fragments fragments;
fragments.reserve(pairs.size());
for (Pairs::const_iterator it = pairs.begin();
it != pairs.end(); ++it) {
int a0 = it->targetAtQueryStart();
int a1 = it->mateTargetAtQueryStart();
if (it->isReverse())
a0 = len0 - a0;
if (!it->isMateReverse())
a1 = len1 - a1;
fragments.push_back(opt::rf
? make_pair(a1, len1 + a0)
: make_pair(a0, len0 + a1));
}
// Remove duplicate fragments.
unsigned orig = fragments.size();
sort(fragments.begin(), fragments.end());
fragments.erase(unique(fragments.begin(), fragments.end()),
fragments.end());
numPairs = fragments.size();
assert((int)orig - (int)numPairs >= 0);
stats.total_frags += orig;
stats.dup_frags += orig - numPairs;
if (numPairs < opt::npairs)
return INT_MIN;
vector<int> fragmentSizes;
fragmentSizes.reserve(fragments.size());
unsigned ma = opt::minAlign;
for (Fragments::const_iterator it = fragments.begin();
it != fragments.end(); ++it) {
int x = it->second - it->first;
if (!opt::rf && opt::method == MLE
&& x <= 2 * int(ma - 1)) {
unsigned align = x / 2;
if (opt::verbose > 0)
#pragma omp critical(cerr)
cerr << PROGRAM ": warning: The observed fragment of "
"size " << x << " bp is shorter than 2*l "
"(l=" << opt::minAlign << ").\n";
ma = min(ma, align);
}
fragmentSizes.push_back(x);
}
#pragma omp critical(g_recMA)
g_recMA = min(g_recMA, ma);
switch (opt::method) {
case MLE:
// Use the maximum likelihood estimator.
return maximumLikelihoodEstimate(ma,
opt::minDist, opt::maxDist,
fragmentSizes, pmf, len0, len1, opt::rf, numPairs);
case MEAN:
// Use the difference of the population mean
// and the sample mean.
return estimateDistanceUsingMean(
fragmentSizes, pmf, numPairs);
case MEDIAN:
// Use the difference of the population median
// and the sample median.
return estimateDistanceUsingMedian(
fragmentSizes, pmf, numPairs);
default:
assert(false);
abort();
}
}
static void writeEstimate(ostream& out,
const ContigNode& id0, const ContigNode& id1,
unsigned len0, unsigned len1,
const Pairs& pairs, const PMF& pmf)
{
if (pairs.size() < opt::npairs)
return;
DistanceEst est;
est.distance = estimateDistance(len0, len1,
pairs, pmf, est.numPairs);
est.stdDev = pmf.getSampleStdDev(est.numPairs);
std::pair<ContigNode, ContigNode> e(id0, id1 ^ id0.sense());
if (est.numPairs >= opt::npairs) {
if (opt::format == DOT) {
#pragma omp critical(out)
out << get(g_contigNames, e) << " [" << est << "]\n";
} else if (opt::format == GFA2) {
// Output only one of the two complementary edges.
if (len1 < opt::seedLen || e.first < e.second || e.first == e.second)
#pragma omp critical(out)
out << "G\t*"
<< '\t' << get(g_contigNames, e.first)
<< '\t' << get(g_contigNames, e.second)
<< '\t' << est.distance
<< '\t' << (int)ceilf(est.stdDev)
<< "\tFC:i:" << est.numPairs
<< '\n';
} else
out << ' ' << get(g_contigNames, id1) << ',' << est;
} else if (opt::verbose > 1) {
#pragma omp critical(cerr)
cerr << "warning: " << get(g_contigNames, e)
<< " [d=" << est.distance << "] "
<< est.numPairs << " of " << pairs.size()
<< " pairs fit the expected distribution\n";
}
}
/** Generate distance estimates for the specified alignments. */
static void writeEstimates(ostream& out,
const vector<SAMRecord>& pairs,
const vector<unsigned>& lengthVec, const PMF& pmf)
{
assert(!pairs.empty());
ContigID id0(get(g_contigNames, pairs.front().rname));
assert(id0 < lengthVec.size());
unsigned len0 = lengthVec[id0];
if (len0 < opt::seedLen)
return; // Skip contigs shorter than the seed length.
ostringstream ss;
if (opt::format == DIST)
ss << pairs.front().rname;
typedef map<ContigNode, Pairs> PairsMap;
PairsMap dataMap[2];
for (Pairs::const_iterator it = pairs.begin();
it != pairs.end(); ++it)
dataMap[it->isReverse()][find_vertex(
it->mrnm, it->isReverse() == it->isMateReverse(),
g_contigNames)]
.push_back(*it);
for (int sense0 = false; sense0 <= true; sense0++) {
if (opt::format == DIST && sense0)
ss << " ;";
const PairsMap& x = dataMap[sense0 ^ opt::rf];
for (PairsMap::const_iterator it = x.begin();
it != x.end(); ++it)
writeEstimate(opt::format == DIST ? ss : out,
ContigNode(id0, sense0), it->first,
len0, lengthVec[it->first.id()],
it->second, pmf);
}
if (opt::format == DIST)
#pragma omp critical(out)
out << ss.str() << '\n';
assert(out.good());
}
/** Load a histogram from the specified file. */
static Histogram loadHist(const string& path)
{
ifstream in(path.c_str());
assert_good(in, path);
Histogram hist;
in >> hist;
assert(in.eof());
if (hist.empty()) {
cerr << "error: the histogram `" << path << "' is empty\n";
exit(EXIT_FAILURE);
}
return hist;
}
/** Copy records from [it, last) to out and stop before alignments to
* the next target sequence.
* @param[in,out] it an input iterator
*/
template<typename It>
static void readPairs(It& it, const It& last, vector<SAMRecord>& out)
{
assert(out.empty());
for (; it != last; ++it) {
if (it->isUnmapped() || it->isMateUnmapped()
|| !it->isPaired() || it->rname == it->mrnm
|| it->mapq < opt::minMapQ)
continue;
if (!out.empty() && out.back().rname != it->rname)
break;
out.push_back(*it);
SAMRecord& sam = out.back();
// Clear unused fields.
sam.qname.clear();
#if SAM_SEQ_QUAL
sam.seq.clear();
sam.qual.clear();
#endif
}
// Check that the input is sorted.
if (it != last && !out.empty()
&& get(g_contigNames, it->rname)
< get(g_contigNames, out.front().rname)) {
cerr << "error: input must be sorted: saw `"
<< out.front().rname << "' before `"
<< it->rname << "'\n";
exit(EXIT_FAILURE);
}
}
int main(int argc, char** argv)
{
if (!opt::db.empty())
opt::metaVars.resize(3);
bool die = false;
for (int c; (c = getopt_long(argc, argv,
shortopts, longopts, NULL)) != -1;) {
istringstream arg(optarg != NULL ? optarg : "");
switch (c) {
case '?': die = true; break;
case OPT_MIND:
arg >> opt::minDist;
break;
case OPT_MAXD:
arg >> opt::maxDist;
break;
case 'l':
arg >> opt::minAlign;
break;
case 'j': arg >> opt::threads; break;
case 'k': arg >> opt::k; break;
case 'n': arg >> opt::npairs; break;
case 'o': arg >> opt::out; break;
case 'q': arg >> opt::minMapQ; break;
case 's': arg >> opt::seedLen; break;
case 'v': opt::verbose++; break;
case OPT_HELP:
cout << USAGE_MESSAGE;
exit(EXIT_SUCCESS);
case OPT_VERSION:
cout << VERSION_MESSAGE;
exit(EXIT_SUCCESS);
case OPT_DB:
arg >> opt::db; break;
case OPT_LIBRARY:
arg >> opt::metaVars[0]; break;
case OPT_STRAIN:
arg >> opt::metaVars[1]; break;
case OPT_SPECIES:
arg >> opt::metaVars[2]; break;
}
if (optarg != NULL && !arg.eof()) {
cerr << PROGRAM ": invalid option: `-"
<< (char)c << optarg << "'\n";
exit(EXIT_FAILURE);
}
}
if (opt::k <= 0) {
cerr << PROGRAM ": missing -k,--kmer option\n";
die = true;
}
if (opt::seedLen <= 0) {
cerr << PROGRAM ": missing -s,--seed-length option\n";
die = true;
}
if (opt::npairs <= 0) {
cerr << PROGRAM ": missing -n,--npairs option\n";
die = true;
}
if (argc - optind < 1) {
cerr << PROGRAM ": missing arguments\n";
die = true;
} else if (argc - optind > 2) {
cerr << PROGRAM ": too many arguments\n";
die = true;
}
if (die) {
cerr << "Try `" << PROGRAM
<< " --help' for more information.\n";
exit(EXIT_FAILURE);
}
if (opt::seedLen < 2*opt::k)
cerr << "warning: the seed-length should be at least twice k:"
" k=" << opt::k << ", s=" << opt::seedLen << '\n';
assert(opt::minAlign > 0);
#if _OPENMP
if (opt::threads > 0)
omp_set_num_threads(opt::threads);
#endif
if (!opt::db.empty()) {
init(db,
opt::db,
opt::verbose,
PROGRAM,
opt::getCommand(argc, argv),
opt::metaVars
);
}
string distanceCountFile(argv[optind++]);
string alignFile(argv[optind] == NULL ? "-" : argv[optind++]);
ifstream inFile(alignFile.c_str());
istream& in(strcmp(alignFile.c_str(), "-") == 0 ? cin : inFile);
if (strcmp(alignFile.c_str(), "-") != 0)
assert_good(inFile, alignFile);
ofstream outFile;
if (!opt::out.empty()) {
outFile.open(opt::out.c_str());
assert(outFile.is_open());
}
ostream& out = opt::out.empty() ? cout : outFile;
if (opt::format == DOT)
out << "digraph dist {\ngraph ["
"k=" << opt::k << " "
"s=" << opt::seedLen << " "
"n=" << opt::npairs << "]\n";
else if (opt::format == GFA2)
out << "H\tVN:Z:2.0\n";
vector<int> vals = make_vector<int>()
<< opt::k
<< opt::seedLen
<< opt::npairs;
vector<string> keys = make_vector<string>()
<< "K"
<< "SeedLen"
<< "NumPairs";
// The fragment size histogram may not be written out until after
// the alignments complete. Wait for the alignments to complete.
in.peek();
// Read the fragment size distribution.
Histogram distanceHist = loadHist(distanceCountFile);
unsigned numRF = distanceHist.count(INT_MIN, 0);
unsigned numFR = distanceHist.count(1, INT_MAX);
unsigned numTotal = distanceHist.size();
bool libRF = numFR < numRF;
if (opt::verbose > 0) {
cerr << "Mate orientation FR: " << numFR << setprecision(3)
<< " (" << (float)100*numFR/numTotal << "%)"
<< " RF: " << numRF << setprecision(3)
<< " (" << (float)100*numRF/numTotal << "%)\n"
<< "The library " << distanceCountFile << " is oriented "
<< (libRF
? "reverse-forward (RF)" : "forward-reverse (FR)")
<< ".\n";
}
vals += make_vector<int>()
<< numFR
<< numRF;
keys += make_vector<string>()
<< "FR_orientation"
<< "RF_orientation";
// Determine the orientation of the library.
if (opt::rf == -1)
opt::rf = libRF;
if (opt::rf)
distanceHist = distanceHist.negate();
if (opt::rf != libRF)
cerr << "warning: The orientation is forced to "
<< (opt::rf
? "reverse-forward (RF)" : "forward-reverse (FR)")
<< " which differs from the detected orientation.\n";
distanceHist.eraseNegative();
distanceHist.removeNoise();
distanceHist.removeOutliers();
Histogram h = distanceHist.trimFraction(0.0001);
if (opt::verbose > 0)
cerr << "Stats mean: " << setprecision(4) << h.mean() << " "
"median: " << setprecision(4) << h.median() << " "
"sd: " << setprecision(4) << h.sd() << " "
"n: " << h.size() << " "
"min: " << h.minimum() << " max: " << h.maximum() << '\n'
<< h.barplot() << endl;
PMF pmf(h);
if (opt::minDist == numeric_limits<int>::min())
opt::minDist = -opt::k + 1;
if (opt::maxDist == numeric_limits<int>::max())
opt::maxDist = pmf.maxValue();
if (opt::verbose > 0)
cerr << "Minimum and maximum distance are set to "
<< opt::minDist << " and " << opt::maxDist << " bp.\n";
assert(opt::minDist < opt::maxDist);
vals += make_vector<int>()
<< opt::minDist
<< opt::maxDist
<< (int)round(h.mean())
<< h.median()
<< (int)round(h.sd())
<< h.size()
<< h.minimum()
<< h.maximum();
keys += make_vector<string>()
<< "minDist"
<< "maxDist"
<< "mean"
<< "median"
<< "sd"
<< "n"
<< "min"
<< "max";
// Read the contig lengths.
vector<unsigned> contigLens;
vals += make_vector<int>()
<< readContigLengths(in, contigLens);
keys += make_vector<string>()
<< "CntgCounted";
// readContigLengths(in, contigLens);
g_contigNames.lock();
// Estimate the distances between contigs.
istream_iterator<SAMRecord> it(in), last;
if (contigLens.size() == 1) {
// When mapping to a single contig, no alignments spanning
// contigs are expected.
assert(in.eof());
exit(EXIT_SUCCESS);
}
assert(in);
g_recMA = opt::minAlign;
#pragma omp parallel
for (vector<SAMRecord> records;;) {
records.clear();
#pragma omp critical(in)
readPairs(it, last, records);
if (records.empty())
break;
writeEstimates(out, records, contigLens, pmf);
}
if (opt::verbose > 0) {
float prop_dups = (float)100 * stats.dup_frags / stats.total_frags;
cerr << "Duplicate rate of spanning fragments: "
<< stats.dup_frags << "/"
<< stats.total_frags << " ("
<< setprecision(3) << prop_dups << "%)\n";
if (prop_dups > 50)
cerr << PROGRAM << ": warning: duplicate rate of fragments "
"spanning more than one contig is high.\n";
}
vals += make_vector<int>()
<< stats.total_frags
<< stats.dup_frags;
keys += make_vector<string>()
<< "total_frags"
<< "dupl_frags";
if (!opt::db.empty()) {
for (unsigned i=0; i<vals.size(); i++)
addToDb(db, keys[i], vals[i]);
}
if (opt::verbose > 0 && g_recMA != opt::minAlign)
cerr << PROGRAM << ": warning: MLE will be more accurate if "
"l is decreased to " << g_recMA << ".\n";
assert(in.eof());
if (opt::format == DOT)
out << "}\n";
return 0;
}
|