1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
#ifndef BIDIRECTIONALBFS_H
#define BIDIRECTIONALBFS_H 1
#include "Graph/DefaultColorMap.h"
#include "Graph/BidirectionalBFSVisitor.h"
#include "Graph/Path.h"
#include <vector>
#include <boost/graph/breadth_first_search.hpp>
using boost::function_requires;
using boost::graph_traits;
using boost::property_traits;
using boost::color_traits;
template <class BidirectionalGraph, class Buffer, class ColorMap>
inline BFSVisitorResult
bidirectionalBFS_visit_edge(
const BidirectionalGraph& g,
typename boost::graph_traits<BidirectionalGraph>::edge_descriptor e,
Buffer& Q,
BidirectionalBFSVisitor<BidirectionalGraph>& vis,
ColorMap& color1,
ColorMap& color2,
Direction dir)
{
function_requires< boost::BidirectionalGraphConcept<BidirectionalGraph> >();
typedef graph_traits<BidirectionalGraph> GTraits;
typedef typename GTraits::vertex_descriptor Vertex;
function_requires< boost::ReadWritePropertyMapConcept<ColorMap, Vertex> >();
typedef typename property_traits<ColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
ColorMap& color = (dir == FORWARD) ? color1 : color2;
ColorMap& other_color = (dir == FORWARD) ? color2 : color1;
Vertex v = (dir == FORWARD) ? target(e, g) : source(e, g);
vis.examine_edge(e, g, dir);
ColorValue v_color = get(color, v);
ColorValue other_v_color = get(other_color, v);
BFSVisitorResult result;
if (other_v_color != Color::white()) {
// We have encountered a common edge, i.e. an
// edge where one vertex has been visited by
// the forward traversal and the other has
// been visited by the reverse traversal.
// Each common edge is once by the forward
// traversal and once by the reverse traversal.
BFSVisitorResult result;
result = vis.common_edge(e, g, dir);
if (result == SKIP_ELEMENT || result == ABORT_SEARCH)
return result;
}
else if (v_color == Color::white()) {
result = vis.discover_vertex(v, g, dir, Q.size());
if (result == SKIP_ELEMENT || result == ABORT_SEARCH)
return result;
result = vis.tree_edge(e, g, dir);
if (result == SKIP_ELEMENT || result == ABORT_SEARCH)
return result;
put(color, v, Color::gray());
Q.push(v);
}
else {
result = vis.non_tree_edge(e, g, dir);
if (result == SKIP_ELEMENT || result == ABORT_SEARCH)
return result;
if (v_color == Color::gray())
vis.gray_target(e, g, dir);
else
vis.black_target(e, g, dir);
}
return SUCCESS;
}
template <class BidirectionalGraph, class Buffer, class ColorMap>
void bidirectionalBFS(
const BidirectionalGraph& g,
typename boost::graph_traits<BidirectionalGraph>::vertex_descriptor s1,
typename boost::graph_traits<BidirectionalGraph>::vertex_descriptor s2,
Buffer& Q1,
Buffer& Q2,
BidirectionalBFSVisitor<BidirectionalGraph>& vis,
ColorMap& color1,
ColorMap& color2)
{
function_requires< boost::BidirectionalGraphConcept<BidirectionalGraph> >();
typedef graph_traits<BidirectionalGraph> GTraits;
typedef typename GTraits::vertex_descriptor Vertex;
function_requires< boost::ReadWritePropertyMapConcept<ColorMap, Vertex> >();
typedef typename property_traits<ColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
typename GTraits::out_edge_iterator oei, oei_end;
typename GTraits::in_edge_iterator iei, iei_end;
put(color1, s1, Color::gray());
put(color2, s2, Color::gray());
vis.discover_vertex(s1, g, FORWARD, Q1.size());
vis.discover_vertex(s2, g, REVERSE, Q2.size());
Q1.push(s1);
Q2.push(s2);
Direction dir = FORWARD;
while (!Q1.empty() || !Q2.empty()) {
Buffer& Q = (dir == FORWARD) ? Q1 : Q2;
ColorMap& color = (dir == FORWARD) ? color1 : color2;
Vertex u = Q.top(); Q.pop();
vis.examine_vertex(u, g, dir);
if (dir == FORWARD) {
for (boost::tie(oei, oei_end) = out_edges(u, g); oei != oei_end; ++oei) {
if (bidirectionalBFS_visit_edge(g, *oei, Q, vis,
color1, color2, dir) == ABORT_SEARCH) {
return;
}
}
} else {
for (boost::tie(iei, iei_end) = in_edges(u, g); iei != iei_end; ++iei) {
if (bidirectionalBFS_visit_edge(g, *iei, Q, vis,
color1, color2, dir) == ABORT_SEARCH) {
return;
}
}
}
put(color, u, Color::black());
vis.finish_vertex(u, g, dir);
if (dir == REVERSE && !Q1.empty())
dir = FORWARD;
else if (dir == FORWARD && !Q2.empty())
dir = REVERSE;
} // while(!Q1.empty() || !Q2.empty())
} // bidirectionalBFS
template <class BidirectionalGraph>
void bidirectionalBFS(const BidirectionalGraph& g,
typename graph_traits<BidirectionalGraph>::vertex_descriptor start,
typename graph_traits<BidirectionalGraph>::vertex_descriptor goal,
BidirectionalBFSVisitor<BidirectionalGraph>& visitor)
{
typedef typename graph_traits<BidirectionalGraph>::vertex_descriptor V;
DefaultColorMap<BidirectionalGraph> colorMap1;
DefaultColorMap<BidirectionalGraph> colorMap2;
boost::queue<V> q1;
boost::queue<V> q2;
bidirectionalBFS(g, start, goal, q1, q2, visitor, colorMap1, colorMap2);
}
#endif
|