1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#ifndef CONSTRAINEDSEARCH_H
#define CONSTRAINEDSEARCH_H 1
#include "Common/ContigPath.h"
#include "Common/ContigProperties.h"
#include "Graph/ContigGraph.h"
#include "Graph/DirectedGraph.h"
#include "Graph/Properties.h"
#include <algorithm>
#include <climits> // for INT_MIN
#include <cassert>
#include <istream>
#include <utility>
#include <vector>
namespace opt {
unsigned maxCost = 100000;
/** Abort the search after visiting maxPaths solutions. */
const unsigned maxPaths = 200;
}
typedef std::pair<ContigNode, int> Constraint;
typedef std::vector<Constraint> Constraints;
typedef std::vector<ContigPath> ContigPaths;
/** Compare the distance of two constraints. */
static inline bool compareDistance(
const Constraint& a, const Constraint& b)
{
return a.second < b.second;
}
/** Compare the ID of a constraint. */
static inline bool compareID(const Constraint& constraint,
const ContigNode& key)
{
return constraint.first < key;
}
/** Find a constraint by ID. */
static inline Constraints::iterator findConstraint(
Constraints& constraints,
const ContigNode& key)
{
Constraints::iterator it = lower_bound(
constraints.begin(), constraints.end(),
key, compareID);
return it != constraints.end()
&& it->first == key ? it : constraints.end();
}
/** Find paths through the graph that satisfy the constraints.
* @return false if the search exited early
*/
template <typename Graph, typename vertex_descriptor>
bool constrainedSearch(const Graph& g,
vertex_descriptor u,
Constraints& constraints,
Constraints::const_iterator nextConstraint,
unsigned satisfied,
ContigPath& path, ContigPaths& solutions,
int distance, unsigned& visitedCount)
{
typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iterator;
assert(satisfied < constraints.size());
static const int SATISFIED = INT_MAX;
if (!path.empty()) {
vertex_descriptor v = path.back();
Constraints::iterator it = findConstraint(constraints, v);
if (it != constraints.end() && it->second != SATISFIED) {
if (distance > it->second)
return true; // This constraint cannot be met.
if (++satisfied == constraints.size()) {
// All the constraints have been satisfied.
solutions.push_back(path);
return solutions.size() <= opt::maxPaths;
}
// This constraint has been satisfied.
int constraint = it->second;
it->second = SATISFIED;
if (!constrainedSearch(g, u, constraints,
nextConstraint, satisfied, path, solutions,
distance, visitedCount))
return false;
it->second = constraint;
return true;
}
if (++visitedCount >= opt::maxCost)
return false; // Too complex.
// Check that the next constraint has not been violated.
while (distance > nextConstraint->second
&& findConstraint(constraints,
nextConstraint->first)->second == SATISFIED)
++nextConstraint; // This constraint is satisfied.
if (distance > nextConstraint->second)
return true; // This constraint cannot be met.
distance += g[v].length;
u = v;
}
path.push_back(vertex_descriptor());
std::pair<out_edge_iterator, out_edge_iterator> adj = g.out_edges(u);
for (out_edge_iterator it = adj.first; it != adj.second; ++it) {
path.back() = target(*it, g);
if (!constrainedSearch(g, u, constraints,
nextConstraint, satisfied, path, solutions,
distance + g[*it].distance, visitedCount))
return false;
}
assert(!path.empty());
path.pop_back();
return true;
}
/** Find paths through the graph that satisfy the constraints.
* @return false if the search exited early
*/
template <typename Graph, typename vertex_descriptor>
bool constrainedSearch(const Graph& g,
vertex_descriptor v,
Constraints& constraints, ContigPaths& paths,
unsigned& cost)
{
if (constraints.empty())
return false;
// Sort the constraints by ID.
sort(constraints.begin(), constraints.end());
// Sort the constraints by distance.
Constraints queue(constraints);
sort(queue.begin(), queue.end(), compareDistance);
ContigPath path;
constrainedSearch(g, v, constraints, queue.begin(), 0,
path, paths, 0, cost);
return cost >= opt::maxCost ? false : !paths.empty();
}
#endif
|