1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
#ifndef DIRECTEDGRAPH_H
#define DIRECTEDGRAPH_H 1
#include "Common/ContigNode.h"
#include "Graph/Properties.h"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
/** A directed graph. */
template <typename VertexProp = no_property,
typename EdgeProp = no_property>
class DirectedGraph
{
class Vertex;
typedef typename std::vector<Vertex> Vertices;
class Edge;
typedef typename std::vector<Edge> Edges;
public:
// Graph
typedef ContigNode vertex_descriptor;
// IncidenceGraph
typedef std::pair<vertex_descriptor, vertex_descriptor>
edge_descriptor;
typedef unsigned degree_size_type;
// BidirectionalGraph
typedef void in_edge_iterator;
// VertexListGraph
typedef unsigned vertices_size_type;
// EdgeListGraph
typedef unsigned edges_size_type;
// PropertyGraph
typedef VertexProp vertex_bundled;
typedef VertexProp vertex_property_type;
typedef EdgeProp edge_bundled;
typedef EdgeProp edge_property_type;
typedef boost::directed_tag directed_category;
typedef boost::allow_parallel_edge_tag edge_parallel_category;
struct traversal_category
: boost::incidence_graph_tag,
boost::adjacency_graph_tag,
boost::vertex_list_graph_tag,
boost::edge_list_graph_tag { };
/** Iterate through the vertices of this graph. */
class vertex_iterator
: public std::iterator<std::input_iterator_tag,
const vertex_descriptor>
{
public:
vertex_iterator() { }
explicit vertex_iterator(vertices_size_type v) : m_v(v) { }
const vertex_descriptor& operator *() const { return m_v; }
bool operator ==(const vertex_iterator& it) const
{
return m_v == it.m_v;
}
bool operator !=(const vertex_iterator& it) const
{
return m_v != it.m_v;
}
vertex_iterator& operator ++() { ++m_v; return *this; }
vertex_iterator operator ++(int)
{
vertex_iterator it = *this;
++*this;
return it;
}
private:
vertex_descriptor m_v;
};
/** Iterate through the out-edges. */
class out_edge_iterator
: public std::iterator<std::input_iterator_tag, edge_descriptor>
{
typedef typename Edges::const_iterator const_iterator;
public:
out_edge_iterator() { }
out_edge_iterator(const const_iterator& it,
vertex_descriptor src) : m_it(it), m_src(src) { }
edge_descriptor operator *() const
{
return edge_descriptor(m_src, m_it->target());
}
bool operator ==(const out_edge_iterator& it) const
{
return m_it == it.m_it;
}
bool operator !=(const out_edge_iterator& it) const
{
return m_it != it.m_it;
}
out_edge_iterator& operator ++() { ++m_it; return *this; }
out_edge_iterator operator ++(int)
{
out_edge_iterator it = *this;
++*this;
return it;
}
const edge_property_type& get_property() const
{
return m_it->get_property();
}
private:
const_iterator m_it;
vertex_descriptor m_src;
};
/** Iterate through adjacent vertices. */
class adjacency_iterator : public Edges::const_iterator
{
typedef typename Edges::const_iterator It;
public:
adjacency_iterator() { }
adjacency_iterator(const It& it) : It(it) { }
vertex_descriptor operator*() const
{
return It::operator*().target();
}
const edge_property_type& get_property() const
{
return It::operator*().get_property();
}
};
/** Iterate through edges. */
class edge_iterator
: public std::iterator<std::input_iterator_tag, edge_descriptor>
{
void nextVertex()
{
vertex_iterator vlast = m_g->vertices().second;
for (; m_vit != vlast; ++m_vit) {
std::pair<adjacency_iterator, adjacency_iterator>
adj = m_g->adjacent_vertices(*m_vit);
if (adj.first != adj.second) {
m_eit = adj.first;
return;
}
}
// Set m_eit to a known value.
static const adjacency_iterator s_eitNULL;
m_eit = s_eitNULL;
}
public:
edge_iterator() { }
edge_iterator(const DirectedGraph* g, const vertex_iterator& vit)
: m_g(g), m_vit(vit)
{
nextVertex();
}
edge_descriptor operator*() const
{
return edge_descriptor(*m_vit, *m_eit);
}
const edge_property_type& get_property() const
{
return m_eit->get_property();
}
bool operator==(const edge_iterator& it) const
{
return m_vit == it.m_vit && m_eit == it.m_eit;
}
bool operator!=(const edge_iterator& it) const
{
return !(*this == it);
}
edge_iterator& operator++()
{
if (++m_eit == m_g->adjacent_vertices(*m_vit).second) {
++m_vit;
nextVertex();
}
return *this;
}
edge_iterator operator++(int)
{
edge_iterator it = *this;
++*this;
return it;
}
private:
const DirectedGraph* m_g;
vertex_iterator m_vit;
adjacency_iterator m_eit;
};
private:
/** A vertex and its properties. */
class Vertex
{
public:
Vertex() { }
Vertex(const vertex_property_type& p) : m_prop(p) { }
/** Return the properties of this vertex. */
const vertex_property_type& get_property() const
{
return m_prop;
}
/** Returns an iterator-range to the out edges of vertex u. */
std::pair<out_edge_iterator, out_edge_iterator>
out_edges(vertex_descriptor u) const
{
return make_pair(out_edge_iterator(m_edges.begin(), u),
out_edge_iterator(m_edges.end(), u));
}
/** Returns an iterator-range to the adjacent vertices. */
std::pair<adjacency_iterator, adjacency_iterator>
adjacent_vertices() const
{
return make_pair(m_edges.begin(), m_edges.end());
}
/** Return the number of outgoing edges. */
degree_size_type out_degree() const
{
return m_edges.size();
}
/** Add an edge to this vertex. */
bool add_edge(vertex_descriptor v, const edge_property_type& ep)
{
m_edges.push_back(Edge(v, ep));
return true;
}
/** Remove the edge to v from this vertex. */
void remove_edge(vertex_descriptor v)
{
m_edges.erase(remove(m_edges.begin(), m_edges.end(), v),
m_edges.end());
}
/** Remove all out edges from this vertex. */
void clear_out_edges()
{
m_edges.clear();
}
/** Return the properties of the edge with target v. */
edge_property_type& operator[](vertex_descriptor v)
{
typename Edges::iterator it
= find(m_edges.begin(), m_edges.end(), v);
assert(it != m_edges.end());
return it->get_property();
}
/** Return the properties of the edge with target v. */
const edge_property_type& operator[](vertex_descriptor v) const
{
typename Edges::const_iterator it
= find(m_edges.begin(), m_edges.end(), v);
assert(it != m_edges.end());
return it->get_property();
}
/** Return true if edge (u,v) exists. */
bool edge(vertex_descriptor v) const
{
return count(m_edges.begin(), m_edges.end(), v) > 0;
}
/** Remove edges that satisfy the predicate. */
template <typename Predicate>
void remove_edge_if(vertex_descriptor u, Predicate predicate)
{
typename Edges::iterator out = m_edges.begin();
for (typename Edges::iterator it = m_edges.begin();
it != m_edges.end(); ++it) {
if (!predicate(edge_descriptor(u, it->target()))) {
if (out != it)
*out = *it;
++out;
}
}
m_edges.erase(out, m_edges.end());
}
private:
Edges m_edges;
vertex_property_type m_prop;
};
/** A directed edge. */
class Edge
{
public:
explicit Edge(vertex_descriptor v, const edge_property_type& ep)
: m_target(v), m_ep(ep) { }
/** Returns the target vertex of this edge. */
vertex_descriptor target() const { return m_target; }
/** Return true if the target of this edge is v. */
bool operator ==(const vertex_descriptor& v) const
{
return m_target == v;
}
edge_property_type& get_property() { return m_ep; }
const edge_property_type& get_property() const { return m_ep; }
private:
/** The target vertex of this edge. */
vertex_descriptor m_target;
edge_property_type m_ep;
};
public:
/** Create an empty graph. */
DirectedGraph() { }
/** Create a graph with n vertices and zero edges. */
DirectedGraph(vertices_size_type n) : m_vertices(n) { }
/** Swap this graph with graph x. */
void swap(DirectedGraph& x)
{
m_vertices.swap(x.m_vertices);
m_removed.swap(x.m_removed);
}
/** Return properties of vertex u. */
const vertex_property_type& operator[](vertex_descriptor u) const
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
return m_vertices[ui].get_property();
}
/** Returns an iterator-range to the vertices. */
std::pair<vertex_iterator, vertex_iterator> vertices() const
{
return make_pair(vertex_iterator(0),
vertex_iterator(num_vertices()));
}
/** Remove all the edges and vertices from this graph. */
void clear() { m_vertices.clear(); m_removed.clear(); }
/** Add a vertex to this graph. */
vertex_descriptor add_vertex(
const vertex_property_type& vp = vertex_property_type())
{
m_vertices.push_back(Vertex(vp));
return vertex_descriptor(num_vertices() - 1);
}
/** Returns an iterator-range to the out edges of vertex u. */
std::pair<out_edge_iterator, out_edge_iterator>
out_edges(vertex_descriptor u) const
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
return m_vertices[ui].out_edges(u);
}
/** Returns an iterator-range to the adjacent vertices of
* vertex u. */
std::pair<adjacency_iterator, adjacency_iterator>
adjacent_vertices(vertex_descriptor u) const
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
return m_vertices[ui].adjacent_vertices();
}
/** Adds edge (u,v) to this graph. */
std::pair<edge_descriptor, bool>
add_edge(vertex_descriptor u, vertex_descriptor v,
const edge_property_type& ep = edge_property_type())
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
assert(get(vertex_index, *this, v) < num_vertices());
return make_pair(edge_descriptor(u, v),
m_vertices[ui].add_edge(v, ep));
}
/** Remove the edge (u,v) from this graph. */
void remove_edge(vertex_descriptor u, vertex_descriptor v)
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
m_vertices[ui].remove_edge(v);
}
/** Remove the edge e from this graph. */
void remove_edge(edge_descriptor e)
{
remove_edge(e.first, e.second);
}
/** Remove all out edges from vertex u. */
void clear_out_edges(vertex_descriptor u)
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
m_vertices[ui].clear_out_edges();
}
/** Remove all edges to and from vertex u from this graph.
* O(V+E) */
void clear_vertex(vertex_descriptor u)
{
clear_out_edges(u);
std::pair<adjacency_iterator, adjacency_iterator>
adj = adjacent_vertices(u);
for (adjacency_iterator v = adj.first; v != adj.second; ++v)
remove_edge(*v, u);
}
/** Set the vertex_removed property. */
void put(vertex_removed_t, vertex_descriptor u, bool flag)
{
vertices_size_type ui = get(vertex_index, *this, u);
if (ui >= m_removed.size())
m_removed.resize(ui + 1);
m_removed[ui] = flag;
}
/** Remove vertex u from this graph. It is assumed that there
* are no edges to or from vertex u. It is best to call
* clear_vertex before remove_vertex.
*/
void remove_vertex(vertex_descriptor u)
{
put(vertex_removed, u, true);
}
/** Return the number of vertices. */
vertices_size_type num_vertices() const
{
return m_vertices.size();
}
/** Return the number of edges. */
edges_size_type num_edges() const
{
edges_size_type n = 0;
std::pair<vertex_iterator, vertex_iterator> vit = vertices();
for (vertex_iterator v = vit.first; v != vit.second; ++v)
n += out_degree(*v);
return n;
}
/** Return the out degree of vertex u. */
degree_size_type out_degree(vertex_descriptor u) const
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
return m_vertices[ui].out_degree();
}
/** Return the nth vertex. */
static vertex_descriptor vertex(vertices_size_type n)
{
return vertex_descriptor(n);
}
/** Iterate through the edges of this graph. */
std::pair<edge_iterator, edge_iterator> edges() const
{
std::pair<vertex_iterator, vertex_iterator> vit = vertices();
return make_pair(edge_iterator(this, vit.first),
edge_iterator(this, vit.second));
}
/** Return the edge (u,v) if it exists and a flag indicating
* whether the edge exists.
*/
std::pair<edge_descriptor, bool> edge(
vertex_descriptor u, vertex_descriptor v) const
{
vertices_size_type ui = get(vertex_index, *this, u);
assert(ui < num_vertices());
return make_pair(edge_descriptor(u, v),
m_vertices[ui].edge(v));
}
/** Return properties of edge e. */
edge_property_type& operator[](edge_descriptor e)
{
vertices_size_type ui = get(vertex_index, *this, e.first);
assert(ui < num_vertices());
return m_vertices[ui][e.second];
}
/** Return properties of edge e. */
const edge_property_type& operator[](edge_descriptor e) const
{
vertices_size_type ui = get(vertex_index, *this, e.first);
assert(ui < num_vertices());
return m_vertices[ui][e.second];
}
/** Remove edges that satisfy the predicate. */
template <typename Predicate>
void remove_edge_if(Predicate predicate)
{
unsigned i = 0;
for (typename Vertices::iterator it = m_vertices.begin();
it != m_vertices.end(); ++it)
it->remove_edge_if(vertex(i++), predicate);
}
/** Return true if this vertex has been removed. */
bool is_removed(vertex_descriptor u) const
{
vertices_size_type ui = get(vertex_index, *this, u);
return ui < m_removed.size() ? m_removed[ui] : false;
}
protected:
/** Copy constructors */
DirectedGraph(const DirectedGraph&) = default;
DirectedGraph(DirectedGraph&&) = default;
DirectedGraph& operator=(const DirectedGraph&) = default;
DirectedGraph& operator=(DirectedGraph&&) = default;
private:
/** The set of vertices. */
Vertices m_vertices;
/** Flags indicating vertices that have been removed. */
std::vector<bool> m_removed;
};
namespace std {
template <typename VertexProp, typename EdgeProp>
inline void swap(DirectedGraph<VertexProp, EdgeProp>& a,
DirectedGraph<VertexProp, EdgeProp>& b) { a.swap(b); }
}
// IncidenceGraph
template <typename VP, typename EP>
std::pair<
typename DirectedGraph<VP, EP>::out_edge_iterator,
typename DirectedGraph<VP, EP>::out_edge_iterator>
out_edges(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
const DirectedGraph<VP, EP>& g)
{
return g.out_edges(u);
}
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::degree_size_type
out_degree(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
const DirectedGraph<VP, EP>& g)
{
return g.out_degree(u);
}
// AdjacencyGraph
template <typename VP, typename EP>
std::pair<
typename DirectedGraph<VP, EP>::adjacency_iterator,
typename DirectedGraph<VP, EP>::adjacency_iterator>
adjacent_vertices(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
const DirectedGraph<VP, EP>& g)
{
return g.adjacent_vertices(u);
}
// VertexListGraph
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::vertices_size_type
num_vertices(const DirectedGraph<VP, EP>& g)
{
return g.num_vertices();
}
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::vertex_descriptor
vertex(typename DirectedGraph<VP, EP>::vertices_size_type ui, const DirectedGraph<VP, EP>& g)
{
return g.vertex(ui);
}
template <typename VP, typename EP>
std::pair<typename DirectedGraph<VP, EP>::vertex_iterator,
typename DirectedGraph<VP, EP>::vertex_iterator>
vertices(const DirectedGraph<VP, EP>& g)
{
return g.vertices();
}
// EdgeListGraph
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::edges_size_type
num_edges(const DirectedGraph<VP, EP>& g)
{
return g.num_edges();
}
template <typename VP, typename EP>
std::pair<typename DirectedGraph<VP, EP>::edge_iterator,
typename DirectedGraph<VP, EP>::edge_iterator>
edges(const DirectedGraph<VP, EP>& g)
{
return g.edges();
}
// AdjacencyMatrix
template <typename VP, typename EP>
std::pair<typename DirectedGraph<VP, EP>::edge_descriptor, bool>
edge(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
typename DirectedGraph<VP, EP>::vertex_descriptor v,
const DirectedGraph<VP, EP>& g)
{
return g.edge(u, v);
}
// VertexMutableGraph
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::vertex_descriptor
add_vertex(DirectedGraph<VP, EP>& g)
{
return g.add_vertex();
}
template <typename VP, typename EP>
void
remove_vertex(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
DirectedGraph<VP, EP>& g)
{
g.remove_vertex(u);
}
// EdgeMutableGraph
template <typename VP, typename EP>
void
clear_vertex(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
DirectedGraph<VP, EP>& g)
{
g.clear_vertex(u);
}
template <typename VP, typename EP>
std::pair<typename DirectedGraph<VP, EP>::edge_descriptor, bool>
add_edge(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
typename DirectedGraph<VP, EP>::vertex_descriptor v,
DirectedGraph<VP, EP>& g)
{
return g.add_edge(u, v);
}
template <typename VP, typename EP>
void
remove_edge(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
typename DirectedGraph<VP, EP>::vertex_descriptor v,
DirectedGraph<VP, EP>& g)
{
g.remove_edge(u, v);
}
template <typename VP, typename EP>
void
remove_edge(
typename DirectedGraph<VP, EP>::edge_descriptor e,
DirectedGraph<VP, EP>& g)
{
g.remove_edge(e);
}
// MutableIncidenceGraph
template <typename VP, typename EP>
void
clear_out_edges(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
DirectedGraph<VP, EP>& g)
{
g.clear_out_edges(u);
}
// MutableEdgeListGraph
template <typename VP, typename EP, class Predicate>
void
remove_edge_if(Predicate predicate, DirectedGraph<VP, EP>& g)
{
g.remove_edge_if(predicate);
}
// PropertyGraph
/** Return true if this vertex has been removed. */
template <typename VP, typename EP>
bool get(vertex_removed_t, const DirectedGraph<VP, EP>& g,
typename DirectedGraph<VP, EP>::vertex_descriptor u)
{
return g.is_removed(u);
}
template <typename VP, typename EP>
void put(vertex_removed_t tag, DirectedGraph<VP, EP>& g,
typename DirectedGraph<VP, EP>::vertex_descriptor u,
bool flag)
{
g.put(tag, u, flag);
}
/** Return the edge properties of the edge iterator eit. */
template <typename VP, typename EP>
const typename DirectedGraph<VP, EP>::edge_property_type&
get(edge_bundle_t, const DirectedGraph<VP, EP>&,
typename DirectedGraph<VP, EP>::edge_iterator eit)
{
return eit.get_property();
}
/** Return the edge properties of the out-edge iterator eit. */
template <typename VP, typename EP>
const typename DirectedGraph<VP, EP>::edge_property_type&
get(edge_bundle_t, const DirectedGraph<VP, EP>&,
typename DirectedGraph<VP, EP>::out_edge_iterator eit)
{
return eit.get_property();
}
// PropertyGraph
template <typename VP, typename EP>
const VP&
get(vertex_bundle_t, const DirectedGraph<VP, EP>& g,
typename DirectedGraph<VP, EP>::vertex_descriptor u)
{
return g[u];
}
template <typename VP, typename EP>
const EP&
get(edge_bundle_t, const DirectedGraph<VP, EP>& g,
typename DirectedGraph<VP, EP>::edge_descriptor e)
{
return g[e];
}
// PropertyGraph vertex_index
namespace boost {
template <typename VP, typename EP>
struct property_map<DirectedGraph<VP, EP>, vertex_index_t>
{
typedef ContigNodeIndexMap type;
typedef type const_type;
};
}
template <typename VP, typename EP>
ContigNodeIndexMap
get(vertex_index_t, const DirectedGraph<VP, EP>&)
{
return ContigNodeIndexMap();
}
template <typename VP, typename EP>
ContigNodeIndexMap::reference
get(vertex_index_t tag, const DirectedGraph<VP, EP>& g,
typename DirectedGraph<VP, EP>::vertex_descriptor u)
{
return get(get(tag, g), u);
}
// VertexMutablePropertyGraph
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::vertex_descriptor
add_vertex(const VP& vp, DirectedGraph<VP, EP>& g)
{
return g.add_vertex(vp);
}
// EdgeMutablePropertyGraph
template <typename VP, typename EP>
std::pair<typename DirectedGraph<VP, EP>::edge_descriptor, bool>
add_edge(
typename DirectedGraph<VP, EP>::vertex_descriptor u,
typename DirectedGraph<VP, EP>::vertex_descriptor v,
const typename DirectedGraph<VP, EP>::edge_property_type& ep,
DirectedGraph<VP, EP>& g)
{
return g.add_edge(u, v, ep);
}
// NamedGraph
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::vertex_descriptor
find_vertex(const std::string& name, const DirectedGraph<VP, EP>&)
{
return find_vertex(name, g_contigNames);
}
template <typename VP, typename EP>
typename DirectedGraph<VP, EP>::vertex_descriptor
find_vertex(const std::string& name, bool sense,
const DirectedGraph<VP, EP>&)
{
return find_vertex(name, sense, g_contigNames);
}
#endif
|