File: NetworkSequenceCollection.cpp

package info (click to toggle)
abyss 2.3.10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,284 kB
  • sloc: cpp: 78,182; ansic: 6,512; makefile: 2,252; perl: 672; sh: 509; haskell: 412; python: 4
file content (1507 lines) | stat: -rw-r--r-- 40,187 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
#include "NetworkSequenceCollection.h"
#include "Assembly/AssemblyAlgorithms.h"
#include "Assembly/Options.h"
#include "Common/Histogram.h"
#include "Common/Log.h"
#include "Common/Options.h"
#include "Common/StringUtil.h"
#include "DataLayer/FastaWriter.h"
#include <climits> // for UINT_MAX
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <utility>

using namespace std;

namespace NSC
{
	dbMap moveFromAaStatMap()
	{
		dbMap temp;
		temp.insert(AssemblyAlgorithms::tempStatMap.getAC());
		AssemblyAlgorithms::tempStatMap.clear();
		return temp;
	}
}

// Don't load data into the control process when we have at least
// DEDICATE_CONTROL_AT total processes. This is needed because the
// control node uses a lot of memory at large NP.
const int DEDICATE_CONTROL_AT = 1000;

void NetworkSequenceCollection::loadSequences()
{
	Timer timer("LoadSequences");
	for (unsigned i = opt::rank; i < opt::inFiles.size();
			i += opt::numProc)
		AssemblyAlgorithms::loadSequences(this, opt::inFiles[i]);
}

/** Receive, process, send, and synchronize.
 * @return the number of inflight messages
 */
size_t NetworkSequenceCollection::pumpFlushReduce()
{
	pumpNetwork();
	m_comm.flush();
	return m_comm.reduceInflight();
}

/** Receive packets and process them until no more work exists for any
 * slave processor.
 */
void NetworkSequenceCollection::completeOperation()
{
	Timer timer("completeOperation");

	while (pumpFlushReduce() > 0)
		;

	assert(m_comm.transmitBufferEmpty()); // Nothing to send.
	m_comm.barrier(); // Synchronize.
	assert(m_comm.receiveEmpty()); // Nothing to receive.
	assert(m_comm.reduceInflight() == 0);
}

/** Run the assembly state machine. */
void NetworkSequenceCollection::run()
{
	/** The number of contigs and k-mer assembled. */
	pair<size_t, size_t> numAssembled;

	ofstream bubbleFile;

	SetState(NAS_LOADING);
	while (m_state != NAS_DONE) {
		switch (m_state) {
			case NAS_LOADING:
				m_data.setColourSpace(
						m_comm.receiveBroadcast());
				loadSequences();
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage();
				break;
			case NAS_LOAD_COMPLETE:
			{
				m_comm.barrier();
				pumpNetwork();
				logger(0) << "Loaded " << m_data.size()
					<< " k-mer.\n";
				assert(!m_data.empty());
				m_data.setDeletedKey();
				m_data.shrink();
				m_comm.reduce(m_data.size());

				Histogram myh
					= AssemblyAlgorithms::coverageHistogram(m_data);
				Histogram h(m_comm.reduce(myh.toVector()));
				AssemblyAlgorithms::setCoverageParameters(h);

				/*
				 * If we have loaded the k-mer hash table from disk, then
				 * the adjacency data for each k-mer has already been computed
				 * in the hash table.
				 *
				 * `applyKmerCoverageThreshold` would not work correctly
				 * in this case because it removes k-mer records from
				 * the hash table without attempting to update the adjacency
				 * info of neighbouring k-mers.
				 */
				if (!m_data.isAdjacencyLoaded() && opt::kc > 0) {
					m_comm.barrier();
					size_t removed = AssemblyAlgorithms::applyKmerCoverageThreshold(m_data, opt::kc);
					logger(1) << "Removed " << removed
						<< " low multiplicity k-mers" << std::endl;
					m_comm.reduce(removed);
					m_comm.reduce(m_data.size());
				}

				EndState();
				SetState(NAS_WAITING);
				break;
			}
			case NAS_GEN_ADJ:
				m_comm.barrier();

				m_numBasesAdjSet = 0;
				AssemblyAlgorithms::generateAdjacency(this);
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage();
				break;
			case NAS_ADJ_COMPLETE:
				m_comm.barrier();
				pumpNetwork();
				logger(0) << "Added " << m_numBasesAdjSet
					<< " edges.\n";
				m_comm.reduce(m_numBasesAdjSet);
				EndState();
				SetState(NAS_WAITING);
				break;
			case NAS_ERODE:
			{
				m_comm.barrier();
				size_t numEroded
					= AssemblyAlgorithms::erodeEnds(this);
				EndState();
				SetState(NAS_ERODE_WAITING);
				m_comm.sendCheckPointMessage(numEroded);
				break;
			}
			case NAS_ERODE_WAITING:
				pumpNetwork();
				break;
			case NAS_ERODE_COMPLETE:
				completeOperation();
				m_comm.reduce(AssemblyAlgorithms::getNumEroded());

				m_comm.reduce(m_data.cleanup());
				m_comm.barrier();

				SetState(NAS_WAITING);
				break;
			case NAS_TRIM:
			{
				assert(m_trimStep != 0);
				m_comm.barrier();
				size_t numRemoved = performNetworkTrim();
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage(numRemoved);
				break;
			}
			case NAS_REMOVE_MARKED: {
				m_comm.barrier();
				size_t count
					= AssemblyAlgorithms::removeMarked(this);
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage(count);
				break;
			}

			case NAS_COVERAGE:
			{
				m_comm.reduce(m_data.cleanup());
				m_lowCoverageContigs = 0;
				m_lowCoverageKmer = 0;
				numAssembled = performNetworkAssembly();
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage();
				break;
			}
			case NAS_COVERAGE_COMPLETE:
				m_comm.barrier();
				pumpNetwork();
				m_comm.reduce(numAssembled.first);
				m_comm.reduce(numAssembled.second);
				m_comm.reduce(m_lowCoverageContigs);
				m_comm.reduce(m_lowCoverageKmer);
				opt::coverage = 0;
				EndState();
				SetState(NAS_WAITING);
				break;

			case NAS_DISCOVER_BUBBLES:
			{
				size_t numDiscovered
					= performNetworkDiscoverBubbles();
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage(numDiscovered);
				break;
			}
			case NAS_POPBUBBLE:
			{
				if (!bubbleFile.is_open())
					AssemblyAlgorithms::openBubbleFile(bubbleFile);
				size_t numPopped
					= performNetworkPopBubbles(bubbleFile);
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage(numPopped);
				break;
			}
			case NAS_MARK_AMBIGUOUS:
			{
				m_comm.barrier();
				pumpNetwork();
				size_t count
					= AssemblyAlgorithms::markAmbiguous(this);
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage(count);
				break;
			}
			case NAS_SPLIT_AMBIGUOUS:
			{
				m_comm.barrier();
				assert(m_comm.receiveEmpty());
				m_comm.barrier();
				size_t count
					= AssemblyAlgorithms::splitAmbiguous(this);
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage(count);
				break;
			}
			case NAS_CLEAR_FLAGS:
				m_comm.barrier();
				pumpNetwork();
				m_data.wipeFlag(
						SeqFlag(SF_MARK_SENSE | SF_MARK_ANTISENSE));
				m_comm.reduce(m_data.cleanup());
				EndState();
				SetState(NAS_WAITING);
				break;
			case NAS_ASSEMBLE:
			{
				m_comm.barrier();
				pumpNetwork();
				FastaWriter writer(opt::contigsTempPath.c_str());
				numAssembled = performNetworkAssembly(&writer);
				EndState();
				SetState(NAS_WAITING);
				m_comm.sendCheckPointMessage();
				break;
			}
			case NAS_ASSEMBLE_COMPLETE:
				m_comm.reduce(numAssembled.first);
				m_comm.reduce(numAssembled.second);
				EndState();
				SetState(NAS_DONE);
				break;
			case NAS_WAITING:
				pumpNetwork();
				break;
			case NAS_DONE:
				break;
		}
	}
}

size_t NetworkSequenceCollection::controlErode()
{
	SetState(NAS_ERODE);
	m_comm.sendControlMessage(APC_SET_STATE, NAS_ERODE);
	m_comm.barrier();
	size_t numEroded = AssemblyAlgorithms::erodeEnds(this);
	EndState();

	// Do not call SetState, because it clears the
	// checkpoint information.
	//SetState(NAS_ERODE_WAITING);
	m_state = NAS_ERODE_WAITING;

	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();
	numEroded += m_checkpointSum;
	EndState();

	if (numEroded == 0) {
		SetState(NAS_WAITING);
		m_comm.sendControlMessage(APC_WAIT);
		m_comm.barrier();
		return 0;
	}

	SetState(NAS_ERODE_COMPLETE);
	m_comm.sendControlMessage(APC_ERODE_COMPLETE);
	completeOperation();
	numEroded += m_comm.reduce(
			AssemblyAlgorithms::getNumEroded());
	cout << "Eroded " << numEroded << " tips.\n";
	size_t removed = m_comm.reduce(m_data.cleanup());
	m_comm.barrier();
	assert(removed == numEroded);
	(void)removed;

	SetState(NAS_WAITING);
	return numEroded;
}

/** Remove marked k-mer.
 * @return the number of k-mer removed
 */
size_t NetworkSequenceCollection::controlRemoveMarked()
{
	if (opt::verbose > 0)
		cout << "Sweeping...\n";
	SetState(NAS_REMOVE_MARKED);
	m_comm.sendControlMessage(APC_SET_STATE, NAS_REMOVE_MARKED);
	m_comm.barrier();
	size_t count = AssemblyAlgorithms::removeMarked(this);
	m_checkpointSum += count;
	EndState();

	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();
	return m_checkpointSum;
}

/** Perform a single round of trimming at the specified length. */
size_t NetworkSequenceCollection::controlTrimRound(unsigned trimLen)
{
	assert(trimLen > 0);
	m_trimStep = trimLen;
	cout << "Pruning tips shorter than " << trimLen << " bp...\n";
	SetState(NAS_TRIM);
	m_comm.sendControlMessage(APC_TRIM, trimLen);
	m_comm.barrier();
	size_t numRemoved = performNetworkTrim();
	EndState();

	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();
	numRemoved += m_checkpointSum;

	size_t numSweeped = controlRemoveMarked();

	if (numRemoved > 0)
		cout << "Pruned " << numSweeped << " k-mer in "
			<< numRemoved << " tips.\n";
	return numRemoved;
}

/** Perform multiple rounds of trimming until complete. */
void NetworkSequenceCollection::controlTrim(unsigned& sum, unsigned start)
{
	if (opt::trimLen == 0)
		return;
	unsigned rounds = 0, total = 0;
	for (unsigned trim = start; trim < opt::trimLen; trim *= 2) {
		rounds++;
		total += controlTrimRound(trim);
	}
	size_t count;
	while ((count = controlTrimRound(opt::trimLen)) > 0) {
		rounds++;
		total += count;
	}
	cout << "Pruned " << total << " tips in "
		<< rounds << " rounds.\n";
	sum += total;
}

/** Remove low-coverage contigs. */
void NetworkSequenceCollection::controlCoverage()
{
	assert(opt::coverage > 0);

	// Split ambiguous branches.
	SetState(NAS_MARK_AMBIGUOUS);
	controlMarkAmbiguous();

	// Remove low-coverage contigs.
	cout << "Removing low-coverage contigs "
			"(mean k-mer coverage < " << opt::coverage << ")...\n";
	SetState(NAS_COVERAGE);
	m_comm.sendControlMessage(APC_SET_STATE, NAS_COVERAGE);
	m_comm.reduce(m_data.cleanup());
	m_lowCoverageContigs = 0;
	m_lowCoverageKmer = 0;
	pair<size_t, size_t> numAssembled
		= performNetworkAssembly();
	EndState();

	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();

	// Count the number of low-coverage contigs.
	SetState(NAS_COVERAGE_COMPLETE);
	m_comm.sendControlMessage(APC_SET_STATE, NAS_COVERAGE_COMPLETE);
	m_comm.barrier();
	pumpNetwork();

	numAssembled.first = m_comm.reduce(numAssembled.first);
	numAssembled.second = m_comm.reduce(numAssembled.second);
	cout << "Found " << numAssembled.second << " k-mer in "
		<< numAssembled.first << " contigs "
			"before removing low-coverage contigs.\n";

	size_t lowCoverageContigs = m_comm.reduce(m_lowCoverageContigs);
	size_t lowCoverageKmer = m_comm.reduce(m_lowCoverageKmer);
	cout << "Removed " << lowCoverageKmer << " k-mer in "
		<< lowCoverageContigs << " low-coverage contigs.\n";

	if (!opt::db.empty()) {
		AssemblyAlgorithms::addToDb ("totalLowCovCntg", lowCoverageContigs);
		AssemblyAlgorithms::addToDb ("totalLowCovKmer", lowCoverageKmer);
	}

	EndState();

	SetState(NAS_SPLIT_AMBIGUOUS);
	controlSplitAmbiguous();

	SetState(NAS_CLEAR_FLAGS);
	m_comm.sendControlMessage(APC_SET_STATE, NAS_CLEAR_FLAGS);
	m_comm.barrier();
	pumpNetwork();
	m_data.wipeFlag(SeqFlag(SF_MARK_SENSE | SF_MARK_ANTISENSE));
	size_t removed = m_comm.reduce(m_data.cleanup());
	cout << "Removed " << removed << " marked k-mer.\n";
	EndState();

	opt::coverage = 0;
}

/** Run the assembly state machine for the controller (rank = 0). */
void NetworkSequenceCollection::runControl()
{
	unsigned prunedSum = 0;
	unsigned erosionSum = 0;
	unsigned finalAmbg = 0;
	SetState(NAS_LOADING);
	size_t temp;
	while (m_state != NAS_DONE) {
		switch (m_state) {
			case NAS_LOADING:
			{
				loadSequences();
				EndState();

				m_numReachedCheckpoint++;
				while (!checkpointReached())
					pumpNetwork();

				SetState(NAS_LOAD_COMPLETE);
				m_comm.sendControlMessage(APC_SET_STATE,
						NAS_LOAD_COMPLETE);
				m_comm.barrier();
				pumpNetwork();
				logger(0) << "Loaded " << m_data.size()
					<< " k-mer.\n";
				assert(!m_data.empty() || opt::numProc >= DEDICATE_CONTROL_AT);
				m_data.setDeletedKey();
				m_data.shrink();
				size_t numLoaded = m_comm.reduce(m_data.size());
				cout << "Loaded " << numLoaded << " k-mer. "
					"At least "
					<< toSI(numLoaded * sizeof (value_type))
					<< "B of RAM is required.\n";

				if (!opt::db.empty())
					AssemblyAlgorithms::addToDb("loadedKmer", numLoaded);

				Histogram myh
					= AssemblyAlgorithms::coverageHistogram(m_data);
				Histogram h(m_comm.reduce(myh.toVector()));
				AssemblyAlgorithms::setCoverageParameters(h);

				/*
				 * If we have loaded the k-mer hash table from disk, then
				 * the adjacency data for each k-mer has already been computed
				 * in the hash table.
				 *
				 * `applyKmerCoverageThreshold` would not work correctly
				 * in this case because it removes k-mer records from
				 * the hash table without attempting to update the adjacency
				 * info of neighbouring k-mers.
				 */
				if (!m_data.isAdjacencyLoaded() && opt::kc > 0) {
					cout << "Minimum k-mer multiplicity kc is "
						<< opt::kc << '\n';
					cout << "Removing low multiplicity k-mers..." << std::endl;
					m_comm.barrier();
					size_t removed = AssemblyAlgorithms::applyKmerCoverageThreshold(m_data, opt::kc);
					logger(1) << "Removed " << removed
						<< " low multiplicity k-mers" << std::endl;
					size_t sumRemoved = m_comm.reduce(removed);
					size_t remaining = m_comm.reduce(m_data.size());
					cout << "Removed " << sumRemoved
						<< " low-multiplicity k-mers, " << remaining
						<< " k-mers remaining" << std::endl;
				}

				EndState();
				SetState(m_data.isAdjacencyLoaded()
						? NAS_ERODE : NAS_GEN_ADJ);
				break;
			}
			case NAS_GEN_ADJ:
				cout << "Finding adjacent k-mer...\n";
				m_comm.sendControlMessage(APC_SET_STATE, NAS_GEN_ADJ);
				m_comm.barrier();
				m_numBasesAdjSet = 0;
				AssemblyAlgorithms::generateAdjacency(this);
				EndState();

				m_numReachedCheckpoint++;
				while (!checkpointReached())
					pumpNetwork();

				SetState(NAS_ADJ_COMPLETE);
				m_comm.sendControlMessage(APC_SET_STATE,
						NAS_ADJ_COMPLETE);
				m_comm.barrier();
				pumpNetwork();
				temp = m_comm.reduce(m_numBasesAdjSet);
				logger(0) << "Added " << m_numBasesAdjSet
					<< " edges.\n";
				cout << "Added " << temp << " edges.\n";

				if (!opt::db.empty())
					AssemblyAlgorithms::addToDb ("EdgesGenerated", temp);

				EndState();
				SetState(opt::erode > 0 ? NAS_ERODE : NAS_TRIM);
				break;
			case NAS_ERODE:
				assert(opt::erode > 0);
				cout << "Eroding tips...\n";

				erosionSum += controlErode();
				//controlErode();

				SetState(NAS_TRIM);
				break;

			case NAS_LOAD_COMPLETE:
			case NAS_ADJ_COMPLETE:
			case NAS_REMOVE_MARKED:
			case NAS_ERODE_WAITING:
			case NAS_ERODE_COMPLETE:
			case NAS_COVERAGE_COMPLETE:
			case NAS_SPLIT_AMBIGUOUS:
			case NAS_CLEAR_FLAGS:
			case NAS_DISCOVER_BUBBLES:
			case NAS_ASSEMBLE_COMPLETE:
			case NAS_WAITING:
				// These states are used only by the slaves.
				assert(false);
				exit(EXIT_FAILURE);

			case NAS_TRIM:
				controlTrim(prunedSum);
				SetState(opt::coverage > 0 ? NAS_COVERAGE
						: opt::bubbleLen > 0 ? NAS_POPBUBBLE
						: NAS_MARK_AMBIGUOUS);
				break;

			case NAS_COVERAGE:
				controlCoverage();
				SetState(opt::erode > 0 ? NAS_ERODE : NAS_TRIM);
				break;

			case NAS_POPBUBBLE:
			{
				assert(opt::bubbleLen > 0);
				ofstream out;
				AssemblyAlgorithms::openBubbleFile(out);

				cout << "Popping bubbles...\n";
				size_t numPopped = controlPopBubbles(out);
				assert(numPopped == m_numPopped);
				assert(out.good());
				out.close();
				cout << "Removed " << numPopped << " bubbles.\n";

				if (!opt::db.empty())
					AssemblyAlgorithms::addToDb ("poppedBubbles", numPopped);

				SetState(NAS_MARK_AMBIGUOUS);
				break;
			}
			case NAS_MARK_AMBIGUOUS:

				finalAmbg = controlMarkAmbiguous();

				//controlMarkAmbiguous();

				SetState(NAS_ASSEMBLE);
				break;
			case NAS_ASSEMBLE:
			{
				cout << "Assembling...\n";
				m_comm.sendControlMessage(APC_ASSEMBLE);
				m_comm.barrier();
				pumpNetwork();
				FastaWriter writer(opt::contigsTempPath.c_str());
				pair<size_t, size_t> numAssembled
					= performNetworkAssembly(&writer);
				EndState();

				m_numReachedCheckpoint++;
				while (!checkpointReached())
					pumpNetwork();

				SetState(NAS_ASSEMBLE_COMPLETE);
				m_comm.sendControlMessage(APC_SET_STATE,
						NAS_ASSEMBLE_COMPLETE);

				numAssembled.first = m_comm.reduce(
						numAssembled.first);
				numAssembled.second = m_comm.reduce(
						numAssembled.second);
				cout << "Assembled " << numAssembled.second
					<< " k-mer in " << numAssembled.first
					<< " contigs.\n";

				if (!opt::db.empty()) {
					AssemblyAlgorithms::addToDb ("assembledKmerNum", numAssembled.second);
					AssemblyAlgorithms::addToDb ("assembledCntg", numAssembled.first);
				}

				SetState(NAS_DONE);
				break;
			}
			case NAS_DONE:
				break;
		}
	}

	if (!opt::db.empty()) {
		AssemblyAlgorithms::addToDb ("finalAmbgVertices", finalAmbg);
		AssemblyAlgorithms::addToDb ("totalErodedTips", erosionSum);
		AssemblyAlgorithms::addToDb ("totalPrunedTips", prunedSum);
	}

}

void NetworkSequenceCollection::EndState()
{
	// Flush the message buffer
	m_comm.flush();
}

//
// Set the state
//
void NetworkSequenceCollection::SetState(
		NetworkAssemblyState newState)
{
	logger(2) << "SetState " << newState
		<< " (was " << m_state << ")\n";

	// Ensure there are no pending messages
	assert(m_comm.transmitBufferEmpty());

	m_state = newState;

	// Reset the checkpoint counter
	m_numReachedCheckpoint = 0;
	m_checkpointSum = 0;
}

/** Receive and dispatch packets.
 * @return the number of packets received
 */
size_t NetworkSequenceCollection::pumpNetwork()
{
	for (size_t count = 0; ; count++) {
		int senderID;
		APMessage msg = m_comm.checkMessage(senderID);
		switch(msg)
		{
			case APM_CONTROL:
				parseControlMessage(senderID);
				// Deal with the control packet before we continue
				// processing further packets.
				return ++count;
			case APM_BUFFERED:
				{
					MessagePtrVector msgs;
					m_comm.receiveBufferedMessage(msgs);
					for (MessagePtrVector::iterator
							iter = msgs.begin();
							iter != msgs.end(); iter++) {
						// Handle each message based on its type
						(*iter)->handle(senderID, *this);
						// Delete the message
						delete (*iter);
						*iter = 0;
					}
					break;
				}
			case APM_NONE:
				return count;
		}
	}
}

/** Call the observers of the specified sequence. */
void NetworkSequenceCollection::notify(const V& key)
{
	switch (m_state) {
		case NAS_ERODE:
		case NAS_ERODE_WAITING:
		case NAS_ERODE_COMPLETE:
			AssemblyAlgorithms::erode(this,
					m_data.getSeqAndData(key));
			break;
		default:
			// Nothing to do.
			break;
	}
}

void NetworkSequenceCollection::handle(
		int /*senderID*/, const SeqAddMessage& message)
{
	assert(isLocal(message.m_seq));
	m_data.add(message.m_seq);
}

void NetworkSequenceCollection::handle(
		int /*senderID*/, const SeqRemoveMessage& message)
{
	assert(isLocal(message.m_seq));
	m_data.remove(message.m_seq);
}

void NetworkSequenceCollection::handle(
		int /*senderID*/, const SetFlagMessage& message)
{
	assert(isLocal(message.m_seq));
	m_data.setFlag(message.m_seq, (SeqFlag)message.m_flag);
}

void NetworkSequenceCollection::handle(
		int /*senderID*/, const SetBaseMessage& message)
{
	assert(isLocal(message.m_seq));
	setBaseExtension(message.m_seq, (extDirection)message.m_dir,
			message.m_base);
}

void NetworkSequenceCollection::handle(
		int /*senderID*/, const RemoveExtensionMessage& message)
{
	assert(isLocal(message.m_seq));
	m_data.removeExtension(message.m_seq,
			(extDirection)message.m_dir, message.m_ext);
	notify(message.m_seq);
}

void NetworkSequenceCollection::parseControlMessage(int source)
{
	ControlMessage controlMsg = m_comm.receiveControlMessage();
	switch(controlMsg.msgType)
	{
		case APC_SET_STATE:
			SetState(NetworkAssemblyState(controlMsg.argument));
			break;
		case APC_CHECKPOINT:
			logger(4) << "checkpoint from " << source << ": "
				<< controlMsg.argument << '\n';
			m_numReachedCheckpoint++;
			m_checkpointSum += controlMsg.argument;
			break;
		case APC_WAIT:
			SetState(NAS_WAITING);
			m_comm.barrier();
			break;
		case APC_BARRIER:
			assert(m_state == NAS_WAITING);
			m_comm.barrier();
			break;
		case APC_TRIM:
			m_trimStep = controlMsg.argument;
			SetState(NAS_TRIM);
			break;
		case APC_ERODE_COMPLETE:
			assert(m_state == NAS_ERODE_WAITING);
			m_comm.flush();
			SetState(NAS_ERODE_COMPLETE);
			break;
		case APC_POPBUBBLE:
			m_numPopped = controlMsg.argument;
			SetState(NAS_POPBUBBLE);
			break;
		case APC_ASSEMBLE:
			m_numAssembled = controlMsg.argument;
			SetState(NAS_ASSEMBLE);
			break;
	}
}

void NetworkSequenceCollection::handle(
		int senderID, const SeqDataRequest& message)
{
	const V& kmer = message.m_seq;
	assert(isLocal(kmer));
	SymbolSetPair extRec;
	int multiplicity = -1;
	bool found = m_data.getSeqData(kmer, extRec, multiplicity);
	assert(found);
	(void)found;
	m_comm.sendSeqDataResponse(
			senderID, message.m_group, message.m_id,
			kmer, extRec, multiplicity);
}

void NetworkSequenceCollection::handle(
		int /*senderID*/, const SeqDataResponse& message)
{
	processSequenceExtension(
			message.m_group, message.m_id, message.m_seq,
			message.m_extRecord, message.m_multiplicity);
}

/** Distributed trimming function. */
size_t NetworkSequenceCollection::performNetworkTrim()
{
	Timer timer("NetworkTrim");
	NetworkSequenceCollection* seqCollection = this;
	size_t numBranchesRemoved = 0;

	// The branch ids
	uint64_t branchGroupID = 0;

	for (iterator iter = seqCollection->begin();
			iter != seqCollection->end(); ++iter) {
		if (iter->second.deleted())
			continue;

		extDirection dir;
		// dir will be set to the trimming direction if the sequence
		// can be trimmed.
		SeqContiguity status = AssemblyAlgorithms::checkSeqContiguity(
				*iter, dir);
		if (status == SC_CONTIGUOUS)
			continue;
		else if(status == SC_ISLAND)
		{
			seqCollection->mark(iter->first);
			numBranchesRemoved++;
			continue;
		}

		bool inserted = m_activeBranchGroups.insert(
				BranchGroupMap::value_type(branchGroupID,
					BranchGroup(dir, 1, iter->first,
						BranchRecord(dir))))
			.second;
		assert(inserted);
		(void)inserted;

		generateExtensionRequest(branchGroupID, 0, iter->first);
		branchGroupID++;
		numBranchesRemoved += processBranchesTrim();
		seqCollection->pumpNetwork();

		// Primitive load balancing
		if(m_activeBranchGroups.size() > MAX_ACTIVE)
		{
			while(m_activeBranchGroups.size() > LOW_ACTIVE)
			{
				seqCollection->pumpNetwork();
				numBranchesRemoved += processBranchesTrim();
			}
		}
	}

	// Clear out the remaining branches
	while(!m_activeBranchGroups.empty())
	{
		numBranchesRemoved += processBranchesTrim();
		seqCollection->pumpNetwork();
	}

	logger(0) << "Pruned " << numBranchesRemoved << " tips.\n";
	return numBranchesRemoved;
}

//
// Process current branches, removing those that are finished
// returns true if the branch list has branches remaining
//
size_t NetworkSequenceCollection::processBranchesTrim()
{
	size_t numBranchesRemoved = 0;
	vector<BranchGroupMap::iterator> removeBranches;
	// Check if any of the current branches have gone inactive
	for (BranchGroupMap::iterator iter = m_activeBranchGroups.begin();
			iter != m_activeBranchGroups.end(); iter++) {
		if(!iter->second.isActive())
		{
			assert(iter->second.size() == 1);
			if (AssemblyAlgorithms::processTerminatedBranchTrim(
						this, iter->second[0]))
				numBranchesRemoved++;

			// Mark the group for removal
			removeBranches.push_back(iter);
		}
	}

	// Remove all the finished branches
	for (vector<BranchGroupMap::iterator>::iterator rmIter
				= removeBranches.begin();
			rmIter != removeBranches.end(); rmIter++)
		m_activeBranchGroups.erase(*rmIter);
	return numBranchesRemoved;
}

/** Discover bubbles to pop. */
size_t NetworkSequenceCollection::
performNetworkDiscoverBubbles()
{
	NetworkSequenceCollection* seqCollection = this;
	Timer timer("NetworkDiscoverBubbles");

	// The branch ids
	uint64_t branchGroupID = 0;
	m_finishedGroups.clear();

	// make sure the branch group structure is initially empty
	assert(m_activeBranchGroups.empty());

	size_t count = 0;

	// Set the cutoffs
	const unsigned maxNumBranches = 3;

	for (iterator iter = seqCollection->begin();
			iter != seqCollection->end(); ++iter) {
		if (iter->second.deleted())
			continue;

		if (++count % 100000 == 0)
			logger(1) << "Popping bubbles: " << count << '\n';

		SymbolSetPair extRec = iter->second.extension();
		for (extDirection dir = SENSE; dir <= ANTISENSE; ++dir) {
			if (extRec.dir[dir].isAmbiguous()) {
				BranchGroupMap::iterator groupIter
					= m_activeBranchGroups.insert(
						BranchGroupMap::value_type(branchGroupID,
							BranchGroup(dir, maxNumBranches,
								iter->first))).first;
				BranchGroup& group = groupIter->second;
				AssemblyAlgorithms::initiateBranchGroup(
						group, iter->first, extRec.dir[dir]);
				generateExtensionRequests(branchGroupID++,
						group.begin(), group.end());
			}
		}

		// Primitive load balancing
		if (m_activeBranchGroups.size() > MAX_ACTIVE) {
			while (m_activeBranchGroups.size() > LOW_ACTIVE) {
				seqCollection->pumpNetwork();
				processBranchesDiscoverBubbles();
			}
		}

		processBranchesDiscoverBubbles();
		seqCollection->pumpNetwork();
	}

	// Wait until the groups finish extending.
	while (processBranchesDiscoverBubbles())
		seqCollection->pumpNetwork();
	assert(m_activeBranchGroups.empty());

	size_t numDiscovered = m_bubbles.size();
	logger(1) << "Discovered " << numDiscovered << " bubbles.\n";
	return numDiscovered;
}

/** Pop bubbles discovered previously. */
size_t NetworkSequenceCollection::
performNetworkPopBubbles(ostream& out)
{
	Timer timer("NetworkPopBubbles");

	// Deal with any packets still in the queue. The barrier
	// synchronization guarantees that the packets have been
	// delivered, but we may not have dealt with them yet.
	pumpNetwork();
	assert(m_comm.receiveEmpty());

	size_t numPopped = 0;
	for (BranchGroupMap::iterator iter = m_bubbles.begin();
			iter != m_bubbles.end(); iter++) {
		assert(iter->second.getStatus() == BGS_JOINED);
		// Check whether this bubble has already been popped.
		if (!iter->second.isAmbiguous(m_data))
			continue;
		numPopped++;
		AssemblyAlgorithms::writeBubble(out,
				iter->second, m_numPopped + numPopped);
		AssemblyAlgorithms::collapseJoinedBranches(
				this, iter->second);
		assert(!iter->second.isAmbiguous(m_data));
		assert(m_comm.receiveEmpty());
	}
	m_bubbles.clear();
	out.flush();
	assert(out.good());

	logger(0) << "Removed " << numPopped << " bubbles.\n";
	return numPopped;
}

//
// Process groups that are finished searching for bubbles
//
bool NetworkSequenceCollection::processBranchesDiscoverBubbles()
{
	bool active = false;
	// Check if any of the current branches have gone inactive
	BranchGroupMap::iterator iter = m_activeBranchGroups.begin();
	while (iter != m_activeBranchGroups.end()) {
		// All branches have been extended one sequence. Check the
		// stop conditions. updateStatus() is called in
		// processSequenceExtensionPop().
		BranchGroupStatus status = iter->second.isNoExt() ? BGS_NOEXT
			: iter->second.getStatus();
		bool finished = false;
		switch (status) {
			case BGS_TOOLONG:
			case BGS_TOOMANYBRANCHES:
			case BGS_NOEXT:
				finished = true;
				break;
			case BGS_JOINED:
				m_bubbles.insert(*iter);
				finished = true;
				break;
			case BGS_ACTIVE:
				active = true;
				break;
			default:
				assert(false);
		}
		if (finished) {
			m_finishedGroups.insert(iter->first);
			m_activeBranchGroups.erase(iter++);
		} else
			iter++;
	}
	return active;
}

/** Discover bubbles to pop. */
size_t NetworkSequenceCollection::controlDiscoverBubbles()
{
	SetState(NAS_DISCOVER_BUBBLES);
	m_comm.sendControlMessage(APC_SET_STATE, NAS_DISCOVER_BUBBLES);

	size_t numDiscovered = performNetworkDiscoverBubbles();
	EndState();

	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();
	numDiscovered += m_checkpointSum;
	if (numDiscovered > 0 && opt::verbose > 0)
		cout << "Discovered " << numDiscovered << " bubbles.\n";
	return numDiscovered;
}

/** Pop the bubbles discovered previously. */
size_t NetworkSequenceCollection::controlPopBubbles(ostream& out)
{
	controlDiscoverBubbles();
	m_comm.sendControlMessage(APC_BARRIER);
	m_comm.barrier();
	pumpNetwork();

	// Perform a round-robin bubble pop to avoid concurrency issues
	SetState(NAS_POPBUBBLE);
	m_checkpointSum = performNetworkPopBubbles(out);
	EndState();

	// Now tell all the slave nodes to perform the pop one by one
	for(int i = 1; i < opt::numProc; i++) {
		m_comm.sendControlMessage(APC_BARRIER);
		m_comm.barrier();
		m_numReachedCheckpoint = 0;
		m_comm.sendControlMessageToNode(i, APC_POPBUBBLE,
				m_numPopped + m_checkpointSum);
		while (!checkpointReached(1))
			pumpNetwork();
	}

	size_t numPopped = m_checkpointSum;
	m_numPopped += numPopped;
	if (numPopped > 0)
		cout << "Removed " << numPopped << " bubbles.\n";
	return numPopped;
}

/** Mark ambiguous branches. */
size_t NetworkSequenceCollection::controlMarkAmbiguous()
{
	cout << "Marking ambiguous branches...\n";
	m_comm.sendControlMessage(APC_SET_STATE, NAS_MARK_AMBIGUOUS);
	m_comm.barrier();
	pumpNetwork();
	size_t count = AssemblyAlgorithms::markAmbiguous(this);
	m_checkpointSum += count;
	EndState();
	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();
	cout << "Marked " << m_checkpointSum << " ambiguous branches.\n";
	return m_checkpointSum;
}

/** Remove ambiguous branches. */
size_t NetworkSequenceCollection::controlSplitAmbiguous()
{
	cout << "Splitting ambiguous branches...\n";
	m_comm.sendControlMessage(APC_SET_STATE, NAS_SPLIT_AMBIGUOUS);
	m_comm.barrier();
	assert(m_comm.receiveEmpty());
	m_comm.barrier();
	size_t count = AssemblyAlgorithms::splitAmbiguous(this);
	m_checkpointSum += count;
	EndState();
	m_numReachedCheckpoint++;
	while (!checkpointReached())
		pumpNetwork();
	cout << "Split " << m_checkpointSum << " ambiguous branches.\n";

	if (!opt::db.empty())
		AssemblyAlgorithms::addToDb ("totalSplitAmbg", m_checkpointSum);

	return m_checkpointSum;
}

/** Assemble a contig. */
void NetworkSequenceCollection::assembleContig(
		FastaWriter* writer,
		BranchRecord& branch, unsigned id)
{
	size_t removed = AssemblyAlgorithms::assembleContig(
			this, writer, branch, id);
	if (removed > 0) {
		m_lowCoverageContigs++;
		m_lowCoverageKmer += removed;
	}
}

namespace std {
	/** Add a pair of numbers. */
	pair<size_t, size_t>& operator+=(
			pair<size_t, size_t>& a, pair<size_t, size_t> b)
	{
		a.first += b.first;
		a.second += b.second;
		return a;
	}
}

/** Assemble contigs.
 * @return the number of contigs and k-mer assembled
 */
pair<size_t, size_t> NetworkSequenceCollection::
performNetworkAssembly(FastaWriter* fileWriter)
{
	Timer timer("NetworkAssembly");
	NetworkSequenceCollection* seqCollection = this;
	pair<size_t, size_t> numAssembled(0, 0);
	uint64_t branchGroupID = 0;
	assert(m_activeBranchGroups.empty());

	for (iterator iter = seqCollection->begin();
			iter != seqCollection->end(); ++iter) {
		if (iter->second.deleted())
			continue;

		extDirection dir;
		// dir will be set to the assembly direction if the sequence
		// can be assembled.
		SeqContiguity status = AssemblyAlgorithms::checkSeqContiguity(
				*iter, dir, true);
		if (status == SC_CONTIGUOUS)
			continue;
		else if(status == SC_ISLAND)
		{
			// Output the singleton contig.
			BranchRecord currBranch(SENSE);
			currBranch.push_back(*iter);
			currBranch.terminate(BS_NOEXT);
			assembleContig(fileWriter, currBranch,
					m_numAssembled + numAssembled.first);
			numAssembled.first++;
			numAssembled.second += currBranch.size();
			continue;
		}

		BranchGroup group(dir, 1, iter->first);
		group.addBranch(BranchRecord(dir));
		pair<BranchGroupMap::iterator, bool>
			inserted = m_activeBranchGroups.insert(
				BranchGroupMap::value_type(branchGroupID, group));
		assert(inserted.second);

		// Generate the first extension request
		BranchRecord& branch = inserted.first->second[0];
		branch.push_back(*iter);
		V kmer = iter->first;
		AssemblyAlgorithms::extendBranch(branch,
				kmer, iter->second.getExtension(dir));
		assert(branch.isActive());
		generateExtensionRequest(branchGroupID++, 0, kmer);

		numAssembled += processBranchesAssembly(
				fileWriter, numAssembled.first);
		seqCollection->pumpNetwork();

		if(m_activeBranchGroups.size() > MAX_ACTIVE)
		{
			while(m_activeBranchGroups.size() > LOW_ACTIVE)
			{
				seqCollection->pumpNetwork();
				numAssembled += processBranchesAssembly(
						fileWriter, numAssembled.first);
			}
		}
	}

	// Clear out the remaining branches
	while(!m_activeBranchGroups.empty())
	{
		numAssembled += processBranchesAssembly(
				fileWriter, numAssembled.first);
		seqCollection->pumpNetwork();
	}

	if (opt::coverage > 0) {
		logger(0) << "Found " << numAssembled.second << " k-mer in "
			<< numAssembled.first
			<< " contigs before removing low-coverage contigs.\n"
			"Removed " << m_lowCoverageKmer << " k-mer in "
				<< m_lowCoverageContigs << " low-coverage contigs.\n";
	} else
		logger(0) << "Assembled " << numAssembled.second
			<< " k-mer in " << numAssembled.first << " contigs.\n";
	return numAssembled;
}

/** Processes branches that are in progress, removing those that have
 * completed.
 * @return the number of contigs and k-mer assembled
 */
pair<size_t, size_t> NetworkSequenceCollection::
processBranchesAssembly(FastaWriter* fileWriter, unsigned currContigID)
{
	size_t assembledContigs = 0, assembledKmer = 0;
	for (BranchGroupMap::iterator it = m_activeBranchGroups.begin();
			it != m_activeBranchGroups.end();) {
		if (!it->second.isActive()) {
			assert(it->second.size() == 1);
			BranchRecord& branch = it->second[0];
			assert(branch.getState() == BS_NOEXT
					|| branch.getState() == BS_AMBI_SAME
					|| branch.getState() == BS_AMBI_OPP);
			if ((opt::ss && branch.getDirection() == SENSE)
					|| (!opt::ss && branch.isCanonical())) {
				assembledContigs++;
				assembledKmer += branch.size();
				assembleContig(fileWriter, branch,
						m_numAssembled + currContigID++);
			}
			m_activeBranchGroups.erase(it++);
		} else
			++it;
	}
	return make_pair(assembledContigs, assembledKmer);
}

/** Send a request for the edges of vertex kmer. */
void NetworkSequenceCollection::generateExtensionRequest(
		uint64_t groupID, uint64_t branchID, const V& kmer)
{
	if (isLocal(kmer)) {
		SymbolSetPair extRec;
		int multiplicity = -1;
		bool success = m_data.getSeqData(kmer, extRec, multiplicity);
		assert(success);
		(void)success;
		processSequenceExtension(groupID, branchID,
				kmer, extRec, multiplicity);
	} else
		m_comm.sendSeqDataRequest(computeNodeID(kmer),
				groupID, branchID, kmer);
}

/** Generate an extension request for each branch of this group. */
void NetworkSequenceCollection::generateExtensionRequests(
		uint64_t groupID,
		BranchGroup::const_iterator first,
		BranchGroup::const_iterator last)
{
	assert(first != last);
#if !NDEBUG
	size_t length = first->size();
#endif
	unsigned branchID = 0;
	for (BranchGroup::const_iterator it = first; it != last; ++it) {
		assert(it->size() == length);
		generateExtensionRequest(groupID, branchID++,
				it->back().first);
	}
}

void NetworkSequenceCollection::processSequenceExtension(
		uint64_t groupID, uint64_t branchID, const V& seq,
		const SymbolSetPair& extRec, int multiplicity)
{
	switch(m_state)
	{
		case NAS_TRIM:
			return processLinearSequenceExtension(groupID, branchID,
					seq, extRec, multiplicity, m_trimStep);
		case NAS_ASSEMBLE:
		case NAS_COVERAGE:
			return processLinearSequenceExtension(groupID, branchID,
					seq, extRec, multiplicity, UINT_MAX);
		case NAS_DISCOVER_BUBBLES:
			return processSequenceExtensionPop(groupID, branchID,
					seq, extRec, multiplicity,
					opt::bubbleLen - opt::kmerSize + 1);
		case NAS_WAITING:
			if (m_finishedGroups.count(groupID) == 0) {
				logger(0) << "error: unexpected seqext message: "
					"state: " << m_state << " "
					"gid: " << groupID << " bid: " << branchID << " "
					"seq: " << seq.str() << '\n';
				assert(false);
			}
			break;
		default:
			logger(0) << "error: unexpected seqext message: "
				"state: " << m_state << " "
				"gid: " << groupID << " bid: " << branchID << " "
				"seq: " << seq.str() << '\n';
			assert(false);
			break;
	}
}

/** Process a sequence extension for trimming. */
void NetworkSequenceCollection::processLinearSequenceExtension(
		uint64_t groupID, uint64_t branchID, const V& seq,
		const SymbolSetPair& extRec, int multiplicity,
		unsigned maxLength)
{
	BranchGroupMap::iterator iter
		= m_activeBranchGroups.find(groupID);
	assert(iter != m_activeBranchGroups.end());
	V currSeq = seq;
	bool active = AssemblyAlgorithms::processLinearExtensionForBranch(
			iter->second[branchID], currSeq, extRec, multiplicity,
			maxLength);
	if (active)
		generateExtensionRequest(groupID, branchID, currSeq);
}

/** Process a sequence extension for popping. */
void NetworkSequenceCollection::processSequenceExtensionPop(
		uint64_t groupID, uint64_t branchID, const V& seq,
		const SymbolSetPair& extRec, int multiplicity,
		unsigned maxLength)
{
	BranchGroupMap::iterator groupIt
		= m_activeBranchGroups.find(groupID);
	if (groupIt == m_activeBranchGroups.end()) {
		// This branch is already complete. Double check that that is
		// the case.
		assert(m_finishedGroups.count(groupID) > 0);
		return;
	}

	BranchGroup& group = groupIt->second;
	bool extendable = AssemblyAlgorithms::processBranchGroupExtension(
			group, branchID, seq, extRec, multiplicity, maxLength);
	if (extendable && group.updateStatus(maxLength) == BGS_ACTIVE)
		generateExtensionRequests(groupID,
				group.begin(), group.end());
}

/** Add a k-mer to this collection. */
void NetworkSequenceCollection::add(const V& seq,
		unsigned coverage)
{
	if (isLocal(seq)) {
		m_data.add(seq, coverage);
	} else {
		assert(coverage == 1);
		m_comm.sendSeqAddMessage(computeNodeID(seq), seq);
	}
}

/** Remove a k-mer from this collection. */
void NetworkSequenceCollection::remove(const V& seq)
{
	if (isLocal(seq))
		m_data.remove(seq);
	else
		m_comm.sendSeqRemoveMessage(computeNodeID(seq), seq);
}

bool NetworkSequenceCollection::checkpointReached() const
{
	return m_numReachedCheckpoint == (unsigned)opt::numProc;
}

bool NetworkSequenceCollection::
checkpointReached(unsigned numRequired) const
{
	return m_numReachedCheckpoint == numRequired;
}

void NetworkSequenceCollection::setFlag(const V& seq, SeqFlag flag)
{
	if (isLocal(seq))
		m_data.setFlag(seq, flag);
	else
		m_comm.sendSetFlagMessage(computeNodeID(seq), seq, flag);
}

bool NetworkSequenceCollection::setBaseExtension(
		const V& seq, extDirection dir, Symbol base)
{
	if (isLocal(seq)) {
		if (m_data.setBaseExtension(seq, dir, base))
			m_numBasesAdjSet++;
	} else {
		int nodeID = computeNodeID(seq);
		m_comm.sendSetBaseExtension(nodeID, seq, dir, base);
	}

	// As this call delegates, the return value is meaningless.
	return false;
}

/** Remove the specified extensions from this k-mer. */
void NetworkSequenceCollection::removeExtension(
		const V& seq, extDirection dir, SymbolSet ext)
{
	if (isLocal(seq)) {
		m_data.removeExtension(seq, dir, ext);
		notify(seq);
	} else {
		int nodeID = computeNodeID(seq);
		m_comm.sendRemoveExtension(nodeID, seq, dir, ext);
	}
}

/** Return whether this sequence belongs to this process. */
bool NetworkSequenceCollection::isLocal(const V& seq) const
{
	return computeNodeID(seq) == opt::rank;
}

/** Return the process ID to which the specified kmer belongs. */
int NetworkSequenceCollection::computeNodeID(const V& seq) const
{
	if (opt::numProc < DEDICATE_CONTROL_AT) {
		return seq.getCode() % (unsigned)opt::numProc;
	} else {
		return seq.getCode() % (unsigned)(opt::numProc - 1) + 1;
	}
}