File: SimpleGraph.cpp

package info (click to toggle)
abyss 2.3.10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,284 kB
  • sloc: cpp: 78,182; ansic: 6,512; makefile: 2,252; perl: 672; sh: 509; haskell: 412; python: 4
file content (828 lines) | stat: -rw-r--r-- 24,058 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#include "config.h"
#include "ContigPath.h"
#include "Estimate.h"
#include "IOUtil.h"
#include "Uncompress.h"
#include "Graph/ConstrainedSearch.h"
#include "Graph/ContigGraph.h"
#include "Graph/ContigGraphAlgorithms.h"
#include "Graph/GraphIO.h"
#include "Graph/GraphUtil.h"
#include <algorithm> // for min
#include <climits> // for UINT_MAX
#include <cmath>
#include <fstream>
#include <getopt.h>
#include <iostream>
#include <pthread.h>
#include <set>
#include <vector>
#include "DataBase/Options.h"
#include "DataBase/DB.h"

using namespace std;

#define PROGRAM "SimpleGraph"

DB db;

static const char VERSION_MESSAGE[] =
PROGRAM " (" PACKAGE_NAME ") " VERSION "\n"
"Written by Jared Simpson and Shaun Jackman.\n"
"\n"
"Copyright 2018 Canada's Michael Smith Genome Sciences Centre\n";

static const char USAGE_MESSAGE[] =
"Usage: " PROGRAM " -k<kmer> -o<out.path> [OPTION]... ADJ DIST\n"
"Find paths through contigs using distance estimates.\n"
"\n"
" Arguments:\n"
"\n"
"  ADJ   adjacency of the contigs\n"
"  DIST  distance estimates between the contigs\n"
"\n"
" Options:\n"
"\n"
"  -k, --kmer=KMER_SIZE  k-mer size\n"
"  -n, --npairs=N        minimum number of pairs [0]\n"
"  -s, --seed-length=N   minimum seed contig length [0]\n"
"  -d, --dist-error=N    acceptable error of a distance estimate\n"
"                        default is 6 bp\n"
"      --max-cost=COST   maximum computational cost\n"
"  -o, --out=FILE        write result to FILE\n"
"  -j, --threads=THREADS use THREADS parallel threads [1]\n"
"      --extend          extend unambiguous paths\n"
"      --no-extend       do not extend unambiguous paths [default]\n"
"      --scaffold        join contigs with Ns [default]\n"
"      --no-scaffold     do not scaffold\n"
"  -v, --verbose         display verbose output\n"
"      --help            display this help and exit\n"
"      --version         output version information and exit\n"
"      --db=FILE         specify path of database repository in FILE\n"
"      --library=NAME    specify library NAME for sqlite\n"
"      --strain=NAME     specify strain NAME for sqlite\n"
"      --species=NAME    specify species NAME for sqlite\n"
"\n"
"Report bugs to <" PACKAGE_BUGREPORT ">.\n";

namespace opt {
	string db;
	dbVars metaVars;
	unsigned k; // used by ContigProperties
	static unsigned threads = 1;
	static int extend;
	static int scaffold = 1;
	static int verbose;
	static string out;

	/** Minimum number of pairs. */
	static unsigned minEdgeWeight;

	/** Minimum seed length. */
	static unsigned minSeedLength;

	/** The acceptable error of a distance estimate. */
	unsigned distanceError = 6;

 	/** Output format */
 	int format = DIST; // used by Estimate
}

static const char shortopts[] = "d:j:k:n:o:s:v";

enum { OPT_HELP = 1, OPT_VERSION, OPT_MAX_COST,
	OPT_DB, OPT_LIBRARY, OPT_STRAIN, OPT_SPECIES };
//enum { OPT_HELP = 1, OPT_VERSION, OPT_MAX_COST };

static const struct option longopts[] = {
	{ "kmer",        required_argument, NULL, 'k' },
	{ "npairs",      required_argument, NULL, 'n' },
	{ "seed-length", required_argument, NULL, 's' },
	{ "dist-error",  required_argument, NULL, 'd' },
	{ "max-cost",    required_argument, NULL, OPT_MAX_COST },
	{ "out",         required_argument, NULL, 'o' },
	{ "extend",      no_argument,       &opt::extend, 1 },
	{ "no-extend",   no_argument,       &opt::extend, 0 },
	{ "scaffold",    no_argument,       &opt::scaffold, 1 },
	{ "no-scaffold", no_argument,       &opt::scaffold, 0 },
	{ "threads",     required_argument, NULL, 'j' },
	{ "verbose",     no_argument,       NULL, 'v' },
	{ "help",        no_argument,       NULL, OPT_HELP },
	{ "version",     no_argument,       NULL, OPT_VERSION },
	{ "db",          required_argument, NULL, OPT_DB },
	{ "library",     required_argument, NULL, OPT_LIBRARY },
	{ "strain",      required_argument, NULL, OPT_STRAIN },
	{ "species",     required_argument, NULL, OPT_SPECIES },
	{ NULL, 0, NULL, 0 }
};

typedef ContigGraph<DirectedGraph<ContigProperties, Distance> > Graph;
static void generatePathsThroughEstimates(const Graph& g,
		const string& estPath);

int main(int argc, char** argv)
{
	if (!opt::db.empty())
		opt::metaVars.resize(3);

	bool die = false;
	for (int c; (c = getopt_long(argc, argv,
					shortopts, longopts, NULL)) != -1;) {
		istringstream arg(optarg != NULL ? optarg : "");
		switch (c) {
			case '?': die = true; break;
			case 'd': arg >> opt::distanceError; break;
			case 'j': arg >> opt::threads; break;
			case 'k': arg >> opt::k; break;
			case OPT_MAX_COST: arg >> opt::maxCost; break;
			case 'n': arg >> opt::minEdgeWeight; break;
			case 'o': arg >> opt::out; break;
			case 's': arg >> opt::minSeedLength; break;
			case 'v': opt::verbose++; break;
			case OPT_HELP:
				cout << USAGE_MESSAGE;
				exit(EXIT_SUCCESS);
			case OPT_VERSION:
				cout << VERSION_MESSAGE;
				exit(EXIT_SUCCESS);
			case OPT_DB:
				arg >> opt::db;
				break;
			case OPT_LIBRARY:
				arg >> opt::metaVars[0];
				break;
			case OPT_STRAIN:
				arg >> opt::metaVars[1];
				break;
			case OPT_SPECIES:
				arg >> opt::metaVars[2]; break;
		}
		if (optarg != NULL && !arg.eof()) {
			cerr << PROGRAM ": invalid option: `-"
				<< (char)c << optarg << "'\n";
			exit(EXIT_FAILURE);
		}
	}

	if (opt::k <= 0) {
		cerr << PROGRAM ": missing -k,--kmer option\n";
		die = true;
	}

	if (opt::out.empty()) {
		cerr << PROGRAM ": " << "missing -o,--out option\n";
		die = true;
	}

	if (argc - optind < 2) {
		cerr << PROGRAM ": missing arguments\n";
		die = true;
	} else if (argc - optind > 2) {
		cerr << PROGRAM ": too many arguments\n";
		die = true;
	}

	if (die) {
		cerr << "Try `" << PROGRAM
			<< " --help' for more information.\n";
		exit(EXIT_FAILURE);
	}

	if (!opt::db.empty())
		init(db,
				opt::db,
				opt::verbose,
				PROGRAM,
				opt::getCommand(argc, argv),
				opt::metaVars);

	string adjFile(argv[optind++]);
	string estFile(argv[optind++]);

	// Read the contig adjacency graph.
	if (opt::verbose > 0)
		cerr << "Reading `" << adjFile << "'..." << endl;
	ifstream fin(adjFile.c_str());
	assert_good(fin, adjFile);
	Graph g;
	fin >> g;
	assert(fin.eof());

	if (opt::verbose > 0)
		printGraphStats(cout, g);
	if (!opt::db.empty()) {
		addToDb(db, "K", opt::k);
		addToDb(db, "V", (num_vertices(g) - num_vertices_removed(g)));
		addToDb(db, "E", num_edges(g));
	}

	// try to find paths that match the distance estimates
	generatePathsThroughEstimates(g, estFile);
}

/** Print a set of constraints. */
static ostream& printConstraints(ostream& out,
		const Graph& g, const Constraints& s)
{
	for (Constraints::const_iterator it = s.begin();
			it != s.end(); ++it)
		out << ' ' << get(vertex_name, g, it->first)
			<< ',' << it->second;
	return out;
}

/** Return the set of contigs that appear more than once in a single
 * solution.
 */
static set<ContigID> findRepeats(ContigID seed,
	const ContigPaths& solutions)
{
	set<ContigID> repeats;
	for (ContigPaths::const_iterator solIt = solutions.begin();
			solIt != solutions.end(); ++solIt) {
		map<ContigID, unsigned> count;
		count[seed]++;
		for (ContigPath::const_iterator it = solIt->begin();
				it != solIt->end(); ++it)
			count[it->contigIndex()]++;
		for (map<ContigID, unsigned>::const_iterator
				it = count.begin(); it != count.end(); ++it)
			if (it->second > 1)
				repeats.insert(it->first);
	}
	return repeats;
}

/** The fewest number of pairs in a distance estimate. */
static unsigned g_minNumPairs = UINT_MAX;

/** The fewest number of pairs used in a path. */
static unsigned g_minNumPairsUsed = UINT_MAX;

static struct {
	unsigned seedTooShort;
	unsigned noEdges;
	unsigned edgesRemoved;
	unsigned totalAttempted;
	unsigned uniqueEnd;
	unsigned noPossiblePaths;
	unsigned noValidPaths;
	unsigned repeat;
	unsigned multiEnd;
	unsigned tooManySolutions;
	unsigned tooComplex;
} stats;

typedef graph_traits<Graph>::vertex_descriptor vertex_descriptor;

/** Return the distance from vertex u to v. */
static int getDistance(const Graph& g,
		vertex_descriptor u, vertex_descriptor v)
{
	typedef graph_traits<Graph>::edge_descriptor edge_descriptor;
	pair<edge_descriptor, bool> e = edge(u, v, g);
	assert(e.second);
	return g[e.first].distance;
}

/** Return the length of the specified path in k-mer. */
static unsigned calculatePathLength(const Graph& g,
		const ContigNode& origin,
		const ContigPath& path, size_t prefix = 0, size_t suffix = 0)
{
	if (prefix + suffix == path.size())
		return 0;
	assert(prefix + suffix < path.size());
	int length = addProp(g, path.begin() + prefix,
			path.end() - suffix).length;

	// Account for the overlap on the left.
	vertex_descriptor u = prefix == 0 ? origin : path[prefix - 1];
	length += getDistance(g, u, path[prefix]);
	assert(length > 0);
	return length;
}

/** Compare the lengths of two paths. */
struct ComparePathLength
{
	ComparePathLength(const Graph& g, const ContigNode& origin)
		: m_g(g), m_origin(origin) { }
	bool operator()(const ContigPath& a, const ContigPath& b) const {
		unsigned lenA = calculatePathLength(m_g, m_origin, a);
		unsigned lenB = calculatePathLength(m_g, m_origin, b);
		return lenA < lenB
			|| (lenA == lenB && a.size() < b.size());
	}

	typedef ContigPath first_argument_type;
	typedef ContigPath second_argument_type;
	typedef bool result_type;
  private:
	const Graph& m_g;
	const ContigNode& m_origin;
};

/** Return an ambiguous path that agrees with all the given paths. */
static ContigPath constructAmbiguousPath(const Graph &g,
		const ContigNode& origin, const ContigPaths& paths)
{
	assert(!paths.empty());

	// Find the size of the smallest path.
	const ContigPath& firstSol = paths.front();
	size_t min_len = firstSol.size();
	for (ContigPaths::const_iterator it = paths.begin() + 1;
			it != paths.end(); ++it)
		min_len = min(min_len, it->size());

	// Find the longest prefix.
	ContigPath vppath;
	size_t longestPrefix;
	bool commonPrefix = true;
	for (longestPrefix = 0;
			longestPrefix < min_len; longestPrefix++) {
		const ContigNode& common_path_node = firstSol[longestPrefix];
		for (ContigPaths::const_iterator solIter = paths.begin();
				solIter != paths.end(); ++solIter) {
			const ContigNode& pathnode = (*solIter)[longestPrefix];
			if (pathnode != common_path_node) {
				// Found the longest prefix.
				commonPrefix = false;
				break;
			}
		}
		if (!commonPrefix)
			break;
		vppath.push_back(common_path_node);
	}

	// Find the longest suffix.
	ContigPath vspath;
	size_t longestSuffix;
	bool commonSuffix = true;
	for (longestSuffix = 0;
			longestSuffix < min_len-longestPrefix; longestSuffix++) {
		const ContigNode& common_path_node
			= firstSol[firstSol.size()-longestSuffix-1];
		for (ContigPaths::const_iterator solIter = paths.begin();
				solIter != paths.end(); ++solIter) {
			const ContigNode& pathnode
				= (*solIter)[solIter->size()-longestSuffix-1];
			if (pathnode != common_path_node) {
				// Found the longest suffix.
				commonSuffix = false;
				break;
			}
		}
		if (!commonSuffix)
			break;
		vspath.push_back(common_path_node);
	}

	ContigPath out;
	out.reserve(vppath.size() + 1 + vspath.size());
	out.insert(out.end(), vppath.begin(), vppath.end());
	if (longestSuffix > 0) {
		const ContigPath& longestPath(
				*max_element(paths.begin(), paths.end(),
					ComparePathLength(g, origin)));
		unsigned length = calculatePathLength(g, origin, longestPath,
				longestPrefix, longestSuffix);

		// Account for the overlap on the right.
		int dist = length + getDistance(g,
				longestSuffix == longestPath.size() ? origin
				: *(longestPath.rbegin() + longestSuffix),
				*(longestPath.rbegin() + longestSuffix - 1));

		// Add k-1 because it is the convention.
		int numN = dist + opt::k - 1;
		assert(numN > 0);

		out.push_back(ContigNode(numN, 'N'));
		out.insert(out.end(), vspath.rbegin(), vspath.rend());
	}
	return out;
}

/** Return a map of contig IDs to their distance along this path.
 * Repeat contigs, which would have more than one position, are not
 * represented in this map.
 */
map<ContigNode, int> makeDistanceMap(const Graph& g,
		const ContigNode& origin, const ContigPath& path)
{
	map<ContigNode, int> distances;
	int distance = 0;
	for (ContigPath::const_iterator it = path.begin();
			it != path.end(); ++it) {
		vertex_descriptor u = it == path.begin() ? origin : *(it - 1);
		vertex_descriptor v = *it;
		distance += getDistance(g, u, v);

		bool inserted = distances.insert(
				make_pair(v, distance)).second;
		if (!inserted) {
			// Mark this contig as a repeat.
			distances[v] = INT_MIN;
		}

		distance += g[v].length;
	}

	// Remove the repeats.
	for (map<ContigNode, int>::iterator it = distances.begin();
			it != distances.end();)
		if (it->second == INT_MIN)
			distances.erase(it++);
		else
			++it;
	return distances;
}

/** Print a distance map. */
static void printDistanceMap(ostream& out, const Graph& g,
		const ContigNode& u, const ContigPath& path)
{
	typedef map<ContigNode, int> DistanceMap;
	DistanceMap distanceMap = makeDistanceMap(g, u, path);
	for (DistanceMap::const_iterator it = distanceMap.begin();
			it != distanceMap.end(); ++it)
		out << get(edge_name, g, make_pair(u, it->first))
			<< " [d=" << it->second << "]\n";
}

typedef std::vector<std::pair<ContigNode, DistanceEst> > Estimates;

/** Find a path for the specified distance estimates.
 * @param out [out] the solution path
 */
static void handleEstimate(const Graph& g,
		const EstimateRecord& er, bool dirIdx,
		ContigPath& out)
{
	if (er.estimates[dirIdx].empty())
		return;

	ContigNode origin(er.refID, dirIdx);
	ostringstream vout_ss;
	ostream bitBucket(NULL);
	ostream& vout = opt::verbose > 0 ? vout_ss : bitBucket;
	vout << "\n* " << get(vertex_name, g, origin) << '\n';

	unsigned minNumPairs = UINT_MAX;
	// generate the reachable set
	Constraints constraints;
	for (Estimates::const_iterator iter
				= er.estimates[dirIdx].begin();
			iter != er.estimates[dirIdx].end(); ++iter) {
		ContigNode v = iter->first;
		const DistanceEst& ep = iter->second;
		minNumPairs = min(minNumPairs, ep.numPairs);
		constraints.push_back(Constraint(v,
					ep.distance + allowedError(ep.stdDev)));
	}

	vout << "Constraints:";
	printConstraints(vout, g, constraints) << '\n';

	ContigPaths solutions;
	unsigned numVisited = 0;
	constrainedSearch(g, origin, constraints, solutions, numVisited);
	bool tooComplex = numVisited >= opt::maxCost;
	bool tooManySolutions = solutions.size() > opt::maxPaths;

	set<ContigID> repeats = findRepeats(er.refID, solutions);
	if (!repeats.empty()) {
		vout << "Repeats:";
		for (set<ContigID>::const_iterator it = repeats.begin();
				it != repeats.end(); ++it)
			vout << ' ' << get(g_contigNames, *it);
		vout << '\n';
	}

	unsigned numPossiblePaths = solutions.size();
	if (numPossiblePaths > 0)
		vout << "Paths: " << numPossiblePaths << '\n';

	for (ContigPaths::iterator solIter = solutions.begin();
			solIter != solutions.end();) {
		vout << *solIter << '\n';

		// Calculate the path distance to each node and see if
		// it is within the estimated distance.
		map<ContigNode, int> distanceMap
			= makeDistanceMap(g, origin, *solIter);

		// Remove solutions whose distance estimates are not correct.
		unsigned validCount = 0, invalidCount = 0, ignoredCount = 0;
		for (Estimates::const_iterator iter
					= er.estimates[dirIdx].begin();
				iter != er.estimates[dirIdx].end(); ++iter) {
			ContigNode v = iter->first;
			const DistanceEst& ep = iter->second;
			vout << get(vertex_name, g, v) << ',' << ep << '\t';

			map<ContigNode, int>::iterator dmIter
				= distanceMap.find(v);
			if (dmIter == distanceMap.end()) {
				// This contig is a repeat.
				ignoredCount++;
				vout << "ignored\n";
				continue;
			}

			// translate distance by -overlap to match
			// coordinate space used by the estimate
			int actualDistance = dmIter->second;
			int diff = actualDistance - ep.distance;
			unsigned buffer = allowedError(ep.stdDev);
			bool invalid = (unsigned)abs(diff) > buffer;
			bool repeat = repeats.count(v.contigIndex()) > 0;
			bool ignored = invalid && repeat;
			if (ignored)
				ignoredCount++;
			else if (invalid)
				invalidCount++;
			else
				validCount++;
			vout << "dist: " << actualDistance
				<< " diff: " << diff
				<< " buffer: " << buffer
				<< " n: " << ep.numPairs
				<< (ignored ? " ignored" : invalid ? " invalid" : "")
				<< '\n';
		}

		if (invalidCount == 0 && validCount > 0)
			++solIter;
		else
			solIter = solutions.erase(solIter);
	}

	vout << "Solutions: " << solutions.size();
	if (tooComplex)
		vout << " (too complex)";
	if (tooManySolutions)
		vout << " (too many solutions)";
	vout << '\n';

	ContigPaths::iterator bestSol = solutions.end();
	int minDiff = 999999;
	for (ContigPaths::iterator solIter = solutions.begin();
			solIter != solutions.end(); ++solIter) {
		map<ContigNode, int> distanceMap
			= makeDistanceMap(g, origin, *solIter);
		int sumDiff = 0;
		for (Estimates::const_iterator iter
					= er.estimates[dirIdx].begin();
				iter != er.estimates[dirIdx].end(); ++iter) {
			ContigNode v = iter->first;
			const DistanceEst& ep = iter->second;
			if (repeats.count(v.contigIndex()) > 0)
				continue;
			map<ContigNode, int>::iterator dmIter
				= distanceMap.find(v);
			assert(dmIter != distanceMap.end());
			int actualDistance = dmIter->second;
			int diff = actualDistance - ep.distance;
			sumDiff += abs(diff);
		}

		if (sumDiff < minDiff) {
			minDiff = sumDiff;
			bestSol = solIter;
		}

		vout << *solIter
			<< " length: " << calculatePathLength(g, origin, *solIter)
			<< " sumdiff: " << sumDiff << '\n';
	}

	/** Lock the debugging stream. */
	static pthread_mutex_t coutMutex = PTHREAD_MUTEX_INITIALIZER;
	pthread_mutex_lock(&coutMutex);
	stats.totalAttempted++;
	g_minNumPairs = min(g_minNumPairs, minNumPairs);

	if (tooComplex) {
		stats.tooComplex++;
	} else if (tooManySolutions) {
		stats.tooManySolutions++;
	} else if (numPossiblePaths == 0) {
		stats.noPossiblePaths++;
	} else if (solutions.empty()) {
		stats.noValidPaths++;
	} else if (repeats.count(er.refID) > 0) {
		vout << "Repeat: " << get(vertex_name, g, origin) << '\n';
		stats.repeat++;
	} else if (solutions.size() > 1) {
		ContigPath path
			= constructAmbiguousPath(g, origin, solutions);
		if (!path.empty()) {
			if (opt::extend)
				extend(g, path.back(), back_inserter(path));
			vout << path << '\n';
			if (opt::scaffold) {
				out.insert(out.end(), path.begin(), path.end());
				g_minNumPairsUsed
					= min(g_minNumPairsUsed, minNumPairs);
			}
		}
		stats.multiEnd++;
	} else {
		assert(solutions.size() == 1);
		assert(bestSol != solutions.end());
		ContigPath& path = *bestSol;
		if (opt::verbose > 1)
			printDistanceMap(vout, g, origin, path);
		if (opt::extend)
			extend(g, path.back(), back_inserter(path));
		out.insert(out.end(), path.begin(), path.end());
		stats.uniqueEnd++;
		g_minNumPairsUsed = min(g_minNumPairsUsed, minNumPairs);
	}
	cout << vout_ss.str();
	if (!out.empty())
		assert(!out.back().ambiguous());
	pthread_mutex_unlock(&coutMutex);
}

/** Return whether the specified edge has sufficient support. */
struct PoorSupport {
	PoorSupport(unsigned minEdgeWeight) : m_minEdgeWeight(minEdgeWeight) { }
	bool operator()(const Estimates::value_type& estimate) const
	{
		return estimate.second.numPairs < m_minEdgeWeight;
	}
	const unsigned m_minEdgeWeight;
};

struct WorkerArg {
	istream* in;
	ostream* out;
	const Graph* graph;
	WorkerArg(istream* in, ostream* out, const Graph* g)
		: in(in), out(out), graph(g) { }
};

static void* worker(void* pArg)
{
	WorkerArg& arg = *static_cast<WorkerArg*>(pArg);
	unsigned countSeedTooShort = 0;
	unsigned countNoEdges = 0;
	unsigned countEdgesRemoved = 0;
	for (;;) {
		/** Lock the input stream. */
		static pthread_mutex_t inMutex = PTHREAD_MUTEX_INITIALIZER;
		pthread_mutex_lock(&inMutex);
		EstimateRecord er;
		bool good = bool((*arg.in) >> er);
		pthread_mutex_unlock(&inMutex);
		if (!good)
			break;
		if ((*arg.graph)[ContigNode(er.refID, false)].length < opt::minSeedLength) {
			++countSeedTooShort;
			continue;
		}

		// Remove edges with insufficient support.
		for (unsigned i = 0; i < 2; ++i) {
			Estimates& estimates = er.estimates[i];
			if (estimates.empty())
				continue;
			unsigned sizeBefore = estimates.size();
			estimates.erase(
				remove_if(estimates.begin(), estimates.end(), PoorSupport(opt::minEdgeWeight)),
				estimates.end());
			unsigned sizeAfter = estimates.size();
			unsigned edgesRemoved = sizeBefore - sizeAfter;
			countEdgesRemoved += edgesRemoved;
			if (sizeAfter == 0)
				++countNoEdges;
		}

		// Flip the anterior distance estimates.
		for (Estimates::iterator it = er.estimates[1].begin();
				it != er.estimates[1].end(); ++it)
			it->first ^= 1;

		ContigPath path;
		handleEstimate(*arg.graph, er, true, path);
		reverseComplement(path.begin(), path.end());
		path.push_back(ContigNode(er.refID, false));
		handleEstimate(*arg.graph, er, false, path);
		if (path.size() > 1) {
			/** Lock the output stream. */
			static pthread_mutex_t outMutex
				= PTHREAD_MUTEX_INITIALIZER;
			pthread_mutex_lock(&outMutex);
			*arg.out << get(g_contigNames, er.refID)
				<< '\t' << path << '\n';
			assert(arg.out->good());
			pthread_mutex_unlock(&outMutex);
		}
	}

	static pthread_mutex_t statsMutex = PTHREAD_MUTEX_INITIALIZER;
	pthread_mutex_lock(&statsMutex);
	stats.seedTooShort += countSeedTooShort;
	stats.noEdges += countNoEdges;
	stats.edgesRemoved += countEdgesRemoved;
	pthread_mutex_unlock(&statsMutex);

	return NULL;
}

static void generatePathsThroughEstimates(const Graph& g,
		const string& estPath)
{
	if (opt::verbose > 0)
		cerr << "Reading `" << estPath << "'..." << endl;
	ifstream inStream(estPath.c_str());
	assert_good(inStream, estPath);

	ofstream outStream(opt::out.c_str());
	assert(outStream.is_open());

	// Create the worker threads.
	vector<pthread_t> threads;
	threads.reserve(opt::threads);
	WorkerArg arg(&inStream, &outStream, &g);
	for (unsigned i = 0; i < opt::threads; i++) {
		pthread_t thread;
		pthread_create(&thread, NULL, worker, &arg);
		threads.push_back(thread);
	}

	// Wait for the worker threads to finish.
	for (vector<pthread_t>::const_iterator it = threads.begin();
			it != threads.end(); ++it) {
		void* status;
		pthread_join(*it, &status);
	}
	if (opt::verbose > 0)
		cout << '\n';

	cout <<
		"Seed too short: " << stats.seedTooShort << "\n"
		"Seeds with no edges: " << stats.noEdges << "\n"
		"Edges removed: " << stats.edgesRemoved << "\n"
		"Total paths attempted: " << stats.totalAttempted << "\n"
		"Unique path: " << stats.uniqueEnd << "\n"
		"No possible paths: " << stats.noPossiblePaths << "\n"
		"No valid paths: " << stats.noValidPaths << "\n"
		"Repetitive: " << stats.repeat << "\n"
		"Multiple valid paths: " << stats.multiEnd << "\n"
		"Too many solutions: " << stats.tooManySolutions << "\n"
		"Too complex: " << stats.tooComplex << "\n";

	vector<int> vals = make_vector<int>()
		<< stats.totalAttempted
		<< stats.uniqueEnd
		<< stats.noPossiblePaths
		<< stats.noValidPaths
		<< stats.repeat
		<< stats.multiEnd
		<< stats.tooManySolutions
		<< stats.tooComplex;

	vector<string> keys = make_vector<string>()
		<< "stat_attempted_path_total"
		<< "stat_unique_path"
		<< "stat_impossible_path"
		<< "stat_no_valid_path"
		<< "stat_repetitive"
		<< "stat_multi_valid_path"
		<< "stat_too_many"
		<< "stat_too_complex";

	inStream.close();
	outStream.close();

	cout << "\n"
		"The minimum number of pairs in a distance estimate is "
		<< g_minNumPairs << ".\n";
	if (g_minNumPairsUsed != UINT_MAX) {
		cout << "The minimum number of pairs used in a path is "
			<< g_minNumPairsUsed << ".\n";
		if (g_minNumPairs < g_minNumPairsUsed)
			cout << "Consider increasing the number of pairs "
				"threshold parameter, n, to " << g_minNumPairsUsed
				<< ".\n";
	}

	vals += make_vector<int>()
		<< g_minNumPairs
		<< g_minNumPairsUsed;

	keys += make_vector<string>()
		<< "minPairNum_DistanceEst"
		<< "minPairNum_UsedInPath";

	if (!opt::db.empty()) {
		for (unsigned i=0; i<vals.size(); i++)
			addToDb (db, keys[i], vals[i]);
	}
}