1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*
* Copyright(c) 2019 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Akinobu Mita. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/* originally copied from the Linux kernel bitmap implementation */
#include <stdlib.h>
#include <util/size.h>
#include <util/util.h>
#include <util/bitmap.h>
#include <ccan/endian/endian.h>
#include <ccan/minmax/minmax.h>
#include <ccan/short_types/short_types.h>
uint64_t *bitmap_alloc(uint64_t nbits)
{
return calloc(BITS_TO_LONGS(nbits), sizeof(uint64_t));
}
void bitmap_set(uint64_t *map, unsigned int start, int len)
{
uint64_t *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
uint64_t mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
void bitmap_clear(uint64_t *map, unsigned int start, int len)
{
uint64_t *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
uint64_t mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (len) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
int test_bit(unsigned int nr, const volatile uint64_t *addr)
{
return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
/*
* This is a common helper function for find_next_bit and
* find_next_zero_bit. The difference is the "invert" argument, which
* is XORed with each fetched word before searching it for one bits.
*/
static uint64_t _find_next_bit(const uint64_t *addr,
uint64_t nbits, uint64_t start, uint64_t invert)
{
uint64_t tmp;
if (!nbits || start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_LONG] ^ invert;
/* Handle 1st word. */
tmp &= BITMAP_FIRST_WORD_MASK(start);
start = round_down(start, BITS_PER_LONG);
while (!tmp) {
start += BITS_PER_LONG;
if (start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_LONG] ^ invert;
}
return min(start + __builtin_ffsl(tmp), nbits);
}
/*
* Find the next set bit in a memory region.
*/
uint64_t find_next_bit(const uint64_t *addr, uint64_t size,
uint64_t offset)
{
return _find_next_bit(addr, size, offset, 0UL);
}
uint64_t find_next_zero_bit(const uint64_t *addr, uint64_t size,
uint64_t offset)
{
return _find_next_bit(addr, size, offset, ~0UL);
}
int bitmap_full(const uint64_t *src, unsigned int nbits)
{
if (small_const_nbits(nbits))
return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
return find_next_zero_bit(src, nbits, 0UL) == nbits;
}
|