1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Performing gradient accumulation with Accelerate
Gradient accumulation is a technique where you can train on bigger batch sizes than
your machine would normally be able to fit into memory. This is done by accumulating gradients over
several batches, and only stepping the optimizer after a certain number of batches have been performed.
While technically standard gradient accumulation code would work fine in a distributed setup, it is not the most efficient
method for doing so and you may experience considerable slowdowns!
In this tutorial you will see how to quickly setup gradient accumulation and perform it with the utilities provided in Accelerate,
which can total to adding just one new line of code!
This example will use a very simplistic PyTorch training loop that performs gradient accumulation every two batches:
```python
device = "cuda"
model.to(device)
gradient_accumulation_steps = 2
for index, batch in enumerate(training_dataloader):
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
loss = loss / gradient_accumulation_steps
loss.backward()
if (index + 1) % gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
## Converting it to Accelerate
First the code shown earlier will be converted to utilize Accelerate without the special gradient accumulation helper:
```diff
+ from accelerate import Accelerator
+ accelerator = Accelerator()
+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(
+ model, optimizer, training_dataloader, scheduler
+ )
for index, batch in enumerate(training_dataloader):
inputs, targets = batch
- inputs = inputs.to(device)
- targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
loss = loss / gradient_accumulation_steps
+ accelerator.backward(loss)
if (index+1) % gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
<Tip warning={true}>
In its current state, this code is not going to perform gradient accumulation efficiently due to a process called gradient synchronization. Read more about that in the [Concepts tutorial](../concept_guides/gradient_synchronization)!
</Tip>
## Letting Accelerate handle gradient accumulation
All that is left now is to let Accelerate handle the gradient accumulation for us. To do so you should pass in a `gradient_accumulation_steps` parameter to [`Accelerator`], dictating the number
of steps to perform before each call to `step()` and how to automatically adjust the loss during the call to [`~Accelerator.backward`]:
```diff
from accelerate import Accelerator
- accelerator = Accelerator()
+ accelerator = Accelerator(gradient_accumulation_steps=2)
```
Alternatively, you can pass in a `gradient_accumulation_plugin` parameter to the [`Accelerator`] object's `__init__`, which will allow you to further customize the gradient accumulation behavior.
Read more about that in the [GradientAccumulationPlugin](../package_reference/accelerator#accelerate.utils.GradientAccumulationPlugin) docs.
From here you can use the [`~Accelerator.accumulate`] context manager from inside your training loop to automatically perform the gradient accumulation for you!
You just wrap it around the entire training part of our code:
```diff
- for index, batch in enumerate(training_dataloader):
+ for batch in training_dataloader:
+ with accelerator.accumulate(model):
inputs, targets = batch
outputs = model(inputs)
```
You can remove all the special checks for the step number and the loss adjustment:
```diff
- loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
- if (index+1) % gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
As you can see the [`Accelerator`] is able to keep track of the batch number you are on and it will automatically know whether to step through the prepared optimizer and how to adjust the loss.
<Tip>
Typically with gradient accumulation, you would need to adjust the number of steps to reflect the change in total batches you are
training on. Accelerate automagically does this for you by default. Behind the scenes we instantiate a [`GradientAccumulationPlugin`] configured to do this.
</Tip>
<Tip warning={true}>
The [`state.GradientState`] is sync'd with the active dataloader being iterated upon. As such it assumes naively that when we have reached the end of the dataloader everything will sync and a step will be performed. To disable this, set `sync_with_dataloader` to be `False` in the [`GradientAccumulationPlugin`]:
```{python}
from accelerate import Accelerator
from accelerate.utils import GradientAccumulationPlugin
plugin = GradientAccumulationPlugin(sync_with_dataloader=False)
accelerator = Accelerator(..., gradient_accumulation_plugin=plugin)
```
</Tip>
## The finished code
Below is the finished implementation for performing gradient accumulation with Accelerate
```python
from accelerate import Accelerator
accelerator = Accelerator(gradient_accumulation_steps=2)
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
for batch in training_dataloader:
with accelerator.accumulate(model):
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
<Tip warning={true}>
It's important that **only one forward/backward** should be done inside the context manager `with accelerator.accumulate(model)`.
</Tip>
To learn more about what magic this wraps around, read the [Gradient Synchronization concept guide](../concept_guides/gradient_synchronization)
## Self-contained example
Here is a self-contained example that you can run to see gradient accumulation in action with Accelerate:
```python
import torch
import copy
from accelerate import Accelerator
from accelerate.utils import set_seed
from torch.utils.data import TensorDataset, DataLoader
# seed
set_seed(0)
# define toy inputs and labels
x = torch.tensor([1., 2., 3., 4., 5., 6., 7., 8.])
y = torch.tensor([2., 4., 6., 8., 10., 12., 14., 16.])
gradient_accumulation_steps = 4
per_device_batch_size = len(x) // gradient_accumulation_steps
# define dataset and dataloader
dataset = TensorDataset(x, y)
dataloader = DataLoader(dataset, batch_size=per_device_batch_size)
# define model, optimizer and loss function
class SimpleLinearModel(torch.nn.Module):
def __init__(self):
super(SimpleLinearModel, self).__init__()
self.weight = torch.nn.Parameter(torch.zeros((1, 1)))
def forward(self, inputs):
return inputs @ self.weight
model = SimpleLinearModel()
model_clone = copy.deepcopy(model)
criterion = torch.nn.MSELoss()
model_optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
model, model_optimizer, dataloader = accelerator.prepare(model, model_optimizer, dataloader)
model_clone_optimizer = torch.optim.SGD(model_clone.parameters(), lr=0.02)
print(f"initial model weight is {model.weight.mean().item():.5f}")
print(f"initial model weight is {model_clone.weight.mean().item():.5f}")
for i, (inputs, labels) in enumerate(dataloader):
with accelerator.accumulate(model):
inputs = inputs.view(-1, 1)
print(i, inputs.flatten())
labels = labels.view(-1, 1)
outputs = model(inputs)
loss = criterion(outputs, labels)
accelerator.backward(loss)
model_optimizer.step()
model_optimizer.zero_grad()
loss = criterion(x.view(-1, 1) @ model_clone.weight, y.view(-1, 1))
model_clone_optimizer.zero_grad()
loss.backward()
model_clone_optimizer.step()
print(f"w/ accumulation, the final model weight is {model.weight.mean().item():.5f}")
print(f"w/o accumulation, the final model weight is {model_clone.weight.mean().item():.5f}")
```
```
initial model weight is 0.00000
initial model weight is 0.00000
0 tensor([1., 2.])
1 tensor([3., 4.])
2 tensor([5., 6.])
3 tensor([7., 8.])
w/ accumulation, the final model weight is 2.04000
w/o accumulation, the final model weight is 2.04000
```
## Gradient accumulation on training samples of variable size
As was pointed out in this [blog-post](https://huggingface.co/blog/gradient_accumulation), which points out a common error that occurs when performing gradient accumulation on training samples of variable size:
> [...] for gradient accumulation across token-level tasks like causal LM training, the correct loss should be computed by the **total loss across all batches in a gradient accumulation step** divided by the **total number of all non padding tokens in those batches**. This is not the same as the average of the per-batch loss values.
In other words, some adjustments must be made on losses that operate on a token-level basis.
### Skeleton code
```python
from accelerate import Accelerator
import math
import contextlib
gradient_accumulation_steps = 2
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
training_iterator = iter(training_dataloader)
num_samples_in_epoch = len(training_dataloader)
remainder = num_samples_in_epoch % gradient_accumulation_steps
remainder = remainder if remainder != 0 else gradient_accumulation_steps
total_updates = math.ceil(num_samples_in_epoch / gradient_accumulation_steps)
total_batched_samples = 0
for update_step in range(total_updates):
# In order to correctly the total number of non-padded tokens on which we'll compute the cross-entropy loss
# we need to pre-load the full local batch - i.e the next per_device_batch_size * accumulation_steps samples
batch_samples = []
num_batches_in_step = gradient_accumulation_steps if update_step != (total_updates - 1) else remainder
for _ in range(num_batches_in_step):
batch_samples += [next(training_iterator)]
# get local num items in batch
num_items_in_batch = sum([(batch["labels"].ne(-100)).sum() for batch in batch_samples])
# to compute it correctly in a multi-device DDP training, we need to gather the total number of items in the full batch.
num_items_in_batch = accelerator.gather(num_items_in_batch).sum().item()
for i, batch in enumerate(batch_samples):
# if we perform gradient accumulation in a multi-devices set-up, we want to avoid unnecessary communications when accumulating
# cf: https://muellerzr.github.io/blog/gradient_accumulation.html
if (i < len(batch_samples) - 1 and accelerator.num_processes > 1):
ctx = model.no_sync
else:
ctx = contextlib.nullcontext
total_batched_samples += 1
with ctx():
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets) # the loss function should sum over samples rather than averaging
# We multiply by num_processes because the DDP calculates the average gradient across all devices whereas dividing by num_items_in_batch already takes into account all devices
# Same reason for gradient_accumulation_steps, but this times it's Accelerate that calculate the average gradient across the accumulated steps
loss = (loss * gradient_accumulation_steps * accelerator.num_processes) / num_items_in_batch
accelerator.backward(loss)
# Sync gradients and perform optimization steps once every gradient_accumulation_steps
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
### Self-contained causal LM example
```py
import torch
import copy
from accelerate import Accelerator
from accelerate.utils import set_seed
from accelerate.logging import get_logger
from torch.utils.data import Dataset, DataLoader
import math
import contexlib
# seed
set_seed(0)
logger = get_logger(__name__)
class MyDataset(Dataset):
def __init__(self, num_samples):
super().__init__()
self.len = num_samples
def __getitem__(self, index):
input_ids = torch.arange(1, index+2, dtype=torch.float32)
labels = torch.remainder(input_ids, 2)
return {"input_ids": input_ids, "labels": labels}
def __len__(self):
return self.len
def collate_fn(features):
input_ids = torch.nn.utils.rnn.pad_sequence([f["input_ids"] for f in features], batch_first=True, padding_value=-100)
labels = torch.nn.utils.rnn.pad_sequence([f["labels"] for f in features], batch_first=True, padding_value=-100)
return {"input_ids": input_ids[..., None], "labels": labels[..., None]}
# define toy inputs and labels
gradient_accumulation_steps = 2
per_device_batch_size = 4
# define accelerator
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
# define dataset and dataloader
# for this toy example, we'll compute gradient descent over one single global batch
dataset = MyDataset(per_device_batch_size*gradient_accumulation_steps*accelerator.num_processes)
dataloader = DataLoader(dataset, batch_size=per_device_batch_size, collate_fn=collate_fn)
# define model, model_optimizer and loss function
model = torch.nn.Linear(1, 2, bias=False)
model_clone = copy.deepcopy(model)
criterion = torch.nn.CrossEntropyLoss(reduction="sum") # must sum over samples rather than averaging
model_optimizer = torch.optim.SGD(model.parameters(), lr=0.08)
logger.warning(f"initial model weight is {model.weight.detach().cpu().squeeze()}")
logger.warning(f"initial model clone weight is {model_clone.weight.detach().cpu().squeeze()}")
# prepare artifacts - accelerator handles device placement and dataloader splitting
model, model_optimizer = accelerator.prepare(model, model_optimizer)
dataloader = accelerator.prepare_data_loader(dataloader, device_placement=True)
training_iterator = iter(dataloader)
num_samples_in_epoch = len(dataloader)
remainder = num_samples_in_epoch % gradient_accumulation_steps
remainder = remainder if remainder != 0 else gradient_accumulation_steps
total_gradient_updates = math.ceil(num_samples_in_epoch / gradient_accumulation_steps)
total_batched_samples = 0
for update_step in range(total_gradient_updates):
# In order to correctly the total number of non-padded tokens on which we'll compute the cross-entropy loss
# we need to pre-load the full local batch - i.e the next per_device_batch_size * accumulation_steps samples
batch_samples = []
num_batches_in_step = gradient_accumulation_steps if update_step != (total_gradient_updates - 1) else remainder
for _ in range(num_batches_in_step):
batch_samples += [next(training_iterator)]
# get local num items in batch
local_num_items_in_batch = sum([(batch["labels"].ne(-100)).sum() for batch in batch_samples])
logger.warning(f"Step {update_step} - Device {accelerator.process_index} - num items in the local batch {local_num_items_in_batch}", main_process_only=False)
# to compute it correctly in a multi-device DDP training, we need to gather the total number of items in the full batch.
num_items_in_batch = accelerator.gather(local_num_items_in_batch).sum().item()
logger.warning(f"Total num items {num_items_in_batch}")
for i, batch in enumerate(batch_samples):
inputs, labels = batch["input_ids"], batch["labels"]
total_batched_samples += 1
# if we perform gradient accumulation in a multi-devices set-up, we want to avoid unnecessary communications when accumulating
# cf: https://muellerzr.github.io/blog/gradient_accumulation.html
if (i < len(batch_samples) - 1 and accelerator.num_processes > 1):
ctx = model.no_sync
else:
ctx = contextlib.nullcontext
with ctx():
outputs = model(inputs)
loss = criterion(outputs.view(-1, 2), labels.view(-1).to(torch.int64))
# We multiply by num_processes because the DDP calculates the average gradient across all devices whereas dividing by num_items_in_batch already takes into account all devices
# Same reason for gradient_accumulation_steps, but this times it's Accelerate that calculate the average gradient across the accumulated steps
loss = (loss * gradient_accumulation_steps * accelerator.num_processes) / num_items_in_batch
accelerator.backward(loss)
model_optimizer.step()
model_optimizer.zero_grad()
logger.warning(f"Device {accelerator.process_index} - w/ accumulation, the final model weight is {accelerator.unwrap_model(model).weight.detach().cpu().squeeze()}", main_process_only=False)
# We know do the same operation but on a single device and without gradient accumulation
if accelerator.is_main_process:
# prepare one single entire batch
dataloader = DataLoader(dataset, batch_size=len(dataset), collate_fn=collate_fn)
full_batch_without_accum = next(iter(dataloader))
total_inputs, total_labels = full_batch_without_accum["input_ids"], full_batch_without_accum["labels"]
model_clone_optimizer = torch.optim.SGD(model_clone.parameters(), lr=0.08)
# train the cloned model
loss = torch.nn.CrossEntropyLoss(reduction="mean")(model_clone(total_inputs).view(-1, 2), total_labels.view(-1).to(torch.int64))
model_clone_optimizer.zero_grad()
loss.backward()
model_clone_optimizer.step()
# We should have the same final weights.
logger.warning(f"w/o accumulation, the final model weight is {model_clone.weight.detach().cpu().squeeze()}")
```
Results on a single device - gradient accumulation steps set to 1 and batch_size set to 8:
```
initial model weight is tensor([-0.0075, 0.5364])
initial model clone weight is tensor([-0.0075, 0.5364])
Step 0 - Device 0 - num items in the local batch 36
Total num items 36
Device 0 - w/ accumulation, the final model weight is tensor([0.0953, 0.4337])
w/o accumulation, the final model weight is tensor([0.0953, 0.4337])
```
Results on a two devices set-up - gradient accumulation steps set to 2 and batch_size set to 4.
```
initial model weight is tensor([-0.0075, 0.5364])
initial model clone weight is tensor([-0.0075, 0.5364])
Step 0 - Device 0 - num items in the local batch 52
Step 0 - Device 1 - num items in the local batch 84
Total num items 136
Device 1 - w/ accumulation, the final model weight is tensor([0.2117, 0.3172])
Device 0 - w/ accumulation, the final model weight is tensor([0.2117, 0.3172])
w/o accumulation, the final model weight is tensor([0.2117, 0.3172])
```
### To go further:
Please find a complete example script on a real world training run in the examples folder at the path [`accelerate/examples/by_feature/gradient_accumulation_for_autoregressive_models.py`](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/gradient_accumulation_for_autoregressive_models.py).
Running it on several training configurations with constant global batch size equal to 32 gives the following graph:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/hf-audio/gradient_accumulation_example/resolve/main/training_losses.png">
</div>
Note that the training losses are exactly the same up to training step 20. The small deviation after this training step occurs at the very end of the first epoch, because, by [default](https://huggingface.co/docs/accelerate/en/package_reference/torch_wrappers#accelerate.data_loader.prepare_data_loader.even_batches), the dataloader duplicates the samples at the beginning of the dataset when the total batch size doesn't exactly divide the dataset.
|