File: automatic_gradient_accumulation.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (243 lines) | stat: -rw-r--r-- 9,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os

# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed

from accelerate import Accelerator
from accelerate.utils import find_executable_batch_size


########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to combine both the gradient accumulation
# and automatic batch size finder utilities of Accelerate to perfrom
# automatic gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
#   - single CPU or single GPU
#   - multi GPUS (using PyTorch distributed mode)
#   - (multi) TPUs
#   - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################

EVAL_BATCH_SIZE = 32


def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
    """
    Creates a set of `DataLoader`s for the `glue` dataset,
    using "bert-base-cased" as the tokenizer.

    Args:
        accelerator (`Accelerator`):
            An `Accelerator` object
        batch_size (`int`, *optional*):
            The batch size for the train and validation DataLoaders.
    """
    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    datasets = load_dataset("glue", "mrpc")

    def tokenize_function(examples):
        # max_length=None => use the model max length (it's actually the default)
        outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
        return outputs

    # Apply the method we just defined to all the examples in all the splits of the dataset
    # starting with the main process first:
    with accelerator.main_process_first():
        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            remove_columns=["idx", "sentence1", "sentence2"],
        )

    # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
    # transformers library
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

    def collate_fn(examples):
        # When using mixed precision we want round multiples of 8/16
        if accelerator.mixed_precision == "fp8":
            pad_to_multiple_of = 16
        elif accelerator.mixed_precision != "no":
            pad_to_multiple_of = 8
        else:
            pad_to_multiple_of = None

        return tokenizer.pad(
            examples,
            padding="longest",
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors="pt",
        )

    # Instantiate dataloaders.
    train_dataloader = DataLoader(
        tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
    )
    eval_dataloader = DataLoader(
        tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
    )

    return train_dataloader, eval_dataloader


# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
    from accelerate.test_utils.training import mocked_dataloaders

    get_dataloaders = mocked_dataloaders  # noqa: F811


def training_function(config, args):
    # For testing only
    if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
        config["num_epochs"] = 2
    # Initialize accelerator
    accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision)
    # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
    lr = config["lr"]
    num_epochs = int(config["num_epochs"])
    seed = int(config["seed"])
    observed_batch_size = int(config["batch_size"])

    metric = evaluate.load("glue", "mrpc")

    # New Code #
    # We use the `find_executable_batch_size` decorator, passing in the desired observed batch size
    # to train on. If a CUDA OOM error occurs, it will retry this loop cutting the batch size in
    # half each time. From this, we can calculate the number of gradient accumulation steps needed
    # and modify the Accelerator object as a result
    @find_executable_batch_size(starting_batch_size=int(observed_batch_size))
    def inner_training_loop(batch_size):
        # Since we need to modify the outside accelerator object, we need to bring it
        # to the local scope
        nonlocal accelerator

        # We can calculate the number of gradient accumulation steps based on the current
        # batch size vs the starting batch size
        num_gradient_accumulation_steps = observed_batch_size // batch_size

        # And then set it in the Accelerator directly:
        accelerator.gradient_accumulation_steps = num_gradient_accumulation_steps

        # Next we need to free all of the stored model references in the Accelerator each time
        accelerator.free_memory()

        # And set the seed so our results are reproducable each reset
        set_seed(seed)

        # Instantiate the model (we build the model here so that the seed also control new weights initialization)
        model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)

        # We could avoid this line since the accelerator is set with `device_placement=True` (default value).
        # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
        # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
        model = model.to(accelerator.device)

        # Instantiate optimizer
        optimizer = AdamW(params=model.parameters(), lr=lr)
        train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)

        # Instantiate scheduler
        lr_scheduler = get_linear_schedule_with_warmup(
            optimizer=optimizer,
            num_warmup_steps=100,
            num_training_steps=(len(train_dataloader) * num_epochs),
        )

        # Prepare everything
        # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
        # prepare method.
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
            model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
        )

        # Now we train the model
        for epoch in range(num_epochs):
            model.train()
            for step, batch in enumerate(train_dataloader):
                # And perform gradient accumulation
                with accelerator.accumulate(model):
                    # We could avoid this line since we set the accelerator with `device_placement=True`.
                    batch.to(accelerator.device)
                    outputs = model(**batch)
                    loss = outputs.loss
                    accelerator.backward(loss)
                    optimizer.step()
                    lr_scheduler.step()
                    optimizer.zero_grad()

            model.eval()
            for step, batch in enumerate(eval_dataloader):
                # We could avoid this line since we set the accelerator with `device_placement=True`.
                batch.to(accelerator.device)
                with torch.no_grad():
                    outputs = model(**batch)
                predictions = outputs.logits.argmax(dim=-1)
                predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
                metric.add_batch(
                    predictions=predictions,
                    references=references,
                )

            eval_metric = metric.compute()
            # Use accelerator.print to print only on the main process.
            accelerator.print(f"epoch {epoch}:", eval_metric)

    # New Code #
    # And call it at the end with no arguments
    # Note: You could also refactor this outside of your training loop function
    inner_training_loop()
    accelerator.end_training()


def main():
    parser = argparse.ArgumentParser(description="Simple example of training script.")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16", "fp8"],
        help="Whether to use mixed precision. Choose"
        "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
        "and an Nvidia Ampere GPU.",
    )
    parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
    args = parser.parse_args()
    # New Code #
    # We modify the starting batch size to be an observed batch size of 256, to guarentee an initial CUDA OOM
    config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 256}
    training_function(config, args)


if __name__ == "__main__":
    main()