File: test_deepspeed_multiple_model.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (183 lines) | stat: -rw-r--r-- 7,598 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import json
from functools import partial
from pathlib import Path

import torch
from transformers import AutoModelForCausalLM

from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.commands.launch import launch_command, launch_command_parser
from accelerate.test_utils.testing import (
    AccelerateTestCase,
    path_in_accelerate_package,
    require_deepspeed,
    require_huggingface_suite,
    require_multi_device,
    require_non_cpu,
    run_first,
    slow,
)
from accelerate.test_utils.training import RegressionDataset
from accelerate.utils import patch_environment
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler, get_active_deepspeed_plugin


GPT2_TINY = "hf-internal-testing/tiny-random-gpt2"


@require_deepspeed
@require_non_cpu
class DeepSpeedConfigIntegration(AccelerateTestCase):
    parser = launch_command_parser()
    test_scripts_folder = path_in_accelerate_package("test_utils", "scripts", "external_deps")

    def setUp(self):
        super().setUp()

        self.dist_env = dict(
            ACCELERATE_USE_DEEPSPEED="true",
            MASTER_ADDR="localhost",
            MASTER_PORT="10999",
            RANK="0",
            LOCAL_RANK="0",
            WORLD_SIZE="1",
        )

        self._test_file_path = inspect.getfile(self.__class__)
        path = Path(self._test_file_path).resolve()
        self.test_file_dir_str = str(path.parents[0])

        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3_inference=f"{self.test_file_dir_str}/ds_config_zero3_model_only.json",
            zero3_training=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )

        with open(self.ds_config_file["zero2"], encoding="utf-8") as f:
            self.config_zero2 = json.load(f)
        with open(self.ds_config_file["zero3_training"], encoding="utf-8") as f:
            self.config_zero3 = json.load(f)
        with open(self.ds_config_file["zero3_inference"], encoding="utf-8") as f:
            self.config_zero3_inference = json.load(f)

        self.model_init = partial(AutoModelForCausalLM.from_pretrained, GPT2_TINY)

    def get_ds_plugins(self, zero3_inference=False):
        ds_zero2 = DeepSpeedPlugin(
            hf_ds_config=self.config_zero2,
        )
        ds_zero3 = DeepSpeedPlugin(
            hf_ds_config=self.config_zero3 if not zero3_inference else self.config_zero3_inference,
        )
        return {"zero2": ds_zero2, "zero3": ds_zero3}

    def test_select_plugin(self):
        ds_plugins = self.get_ds_plugins()
        ds_zero2, ds_zero3 = ds_plugins.values()
        accelerator = Accelerator(
            deepspeed_plugin=ds_plugins,
        )
        # Accelerator's constructor should automatically enable the first plugin
        assert ds_zero2.selected
        assert not ds_zero3.selected
        assert get_active_deepspeed_plugin(accelerator.state) == ds_zero2
        assert accelerator.deepspeed_plugin == ds_zero2
        assert accelerator.state.get_deepspeed_plugin("zero2") == ds_zero2
        accelerator.state.select_deepspeed_plugin("zero3")
        assert not ds_zero2.selected
        assert ds_zero3.selected
        assert get_active_deepspeed_plugin(accelerator.state) == ds_zero3
        assert accelerator.deepspeed_plugin == ds_zero3
        assert accelerator.state.get_deepspeed_plugin("zero3") == ds_zero3
        accelerator.state.select_deepspeed_plugin("zero2")
        assert not ds_zero3.selected
        assert ds_zero2.selected
        assert get_active_deepspeed_plugin(accelerator.state) == ds_zero2
        assert accelerator.deepspeed_plugin == ds_zero2
        assert accelerator.state.get_deepspeed_plugin("zero2") == ds_zero2

    @require_huggingface_suite
    def test_config_reference_update(self):
        # Make sure that the transformers weakref is updating when we update the config
        ds_plugins = self.get_ds_plugins(zero3_inference=True)
        zero2, zero3 = ds_plugins.values()
        accelerator = Accelerator(deepspeed_plugin=ds_plugins)
        from transformers.integrations.deepspeed import deepspeed_config

        # Note that these have `auto` values being set so we need to adjust
        assert accelerator.deepspeed_plugin is zero2
        zero2.deepspeed_config["train_micro_batch_size_per_gpu"] = 1
        zero2.deepspeed_config.pop("train_batch_size")
        assert deepspeed_config() == accelerator.deepspeed_plugin.hf_ds_config.config

        accelerator.state.select_deepspeed_plugin("zero3")
        assert accelerator.deepspeed_plugin is zero3
        assert deepspeed_config() == accelerator.deepspeed_plugin.hf_ds_config.config

    def test_enable_disable_manually_set(self):
        ds_plugins = self.get_ds_plugins()
        ds_zero2, _ = ds_plugins.values()
        with self.assertRaises(ValueError):
            ds_zero2.select()
        accelerator = Accelerator(deepspeed_plugin=ds_plugins)
        accelerator.state.select_deepspeed_plugin("zero2")
        with self.assertRaises(NotImplementedError):
            ds_zero2.selected = False
        assert ds_zero2.selected

    def test_multiple_accelerators(self):
        ds_plugins = self.get_ds_plugins()
        ds_zero2, ds_zero3 = ds_plugins.values()
        _ = Accelerator(
            deepspeed_plugin=ds_zero2,
        )
        with self.assertRaises(NotImplementedError):
            _ = Accelerator(deepspeed_plugin=ds_zero3)

    def test_prepare_multiple_models_zero3_inference(self):
        with patch_environment(**self.dist_env):
            ds_plugins = self.get_ds_plugins(zero3_inference=True)
            accelerator = Accelerator(deepspeed_plugin=ds_plugins)
            # Using Zero-2 first
            model1 = self.model_init()
            optimizer = DummyOptim(model1.parameters())
            scheduler = DummyScheduler(optimizer)

            dataset = RegressionDataset()
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=1)
            model1, optimizer, scheduler, dataloader = accelerator.prepare(model1, optimizer, scheduler, dataloader)
            accelerator.state.select_deepspeed_plugin("zero3")
            model2 = self.model_init()
            with self.assertLogs(level="WARNING") as captured:
                model2 = accelerator.prepare(model2)
                self.assertIn(
                    "A wrapped DeepSpeed engine reference is currently tied for this `Accelerator()` instance.",
                    captured.output[0],
                )

            assert accelerator.deepspeed_engine_wrapped.engine is model1

    @run_first
    @require_huggingface_suite
    @require_multi_device
    @slow
    def test_train_multiple_models(self):
        self.test_file_path = self.test_scripts_folder / "test_ds_multiple_model.py"
        args = ["--num_processes=2", "--num_machines=1", str(self.test_file_path)]
        args = self.parser.parse_args(args)
        launch_command(args)