File: test_big_modeling.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (1099 lines) | stat: -rw-r--r-- 44,359 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import gc
import itertools
import logging
import os
import unittest
from collections import OrderedDict
from tempfile import TemporaryDirectory

import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoTokenizer

from accelerate.big_modeling import (
    cpu_offload,
    cpu_offload_with_hook,
    disk_offload,
    dispatch_model,
    init_empty_weights,
    init_on_device,
    load_checkpoint_and_dispatch,
)
from accelerate.hooks import remove_hook_from_submodules
from accelerate.test_utils import (
    require_bnb,
    require_cuda_or_xpu,
    require_multi_device,
    require_multi_gpu_or_xpu,
    require_non_cpu,
    require_non_hpu,
    require_non_torch_xla,
    slow,
    torch_device,
)
from accelerate.utils import is_hpu_available, offload_state_dict
from accelerate.utils.memory import clear_device_cache
from accelerate.utils.versions import is_torch_version


logger = logging.getLogger(__name__)
torch_device_type = torch_device
torch_device = f"{torch_device}:0" if torch_device != "cpu" else "cpu"

if is_hpu_available():
    ATOL = 1e-4
    RTOL = 1e-4
else:
    ATOL = 1e-5
    RTOL = 1e-5


class ModelForTest(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(3, 4)
        self.batchnorm = nn.BatchNorm1d(4)
        self.linear2 = nn.Linear(4, 5)

    def forward(self, x):
        return self.linear2(self.batchnorm(self.linear1(x)))


class LinearWithNonPersistentBuffers(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.register_buffer("weight", torch.ones((out_features, in_features), **factory_kwargs))
        if bias:
            self.register_buffer("bias", torch.ones(out_features, **factory_kwargs), persistent=False)
        else:
            self.register_buffer("bias", None)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return torch.nn.functional.linear(input, self.weight, self.bias)


class ModelForTestNonPersistentBuffers(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = LinearWithNonPersistentBuffers(3, 4)
        self.batchnorm = nn.BatchNorm1d(4)
        self.linear2 = LinearWithNonPersistentBuffers(4, 5)

    def forward(self, x):
        return self.linear2(self.batchnorm(self.linear1(x)))


class ModelForTestCopy(nn.Module):
    def __init__(self, id: int):
        super().__init__()
        self.id = id
        self.linear1 = nn.Linear(3, 4)
        self.batchnorm = nn.BatchNorm1d(4)
        self.linear2 = nn.Linear(4, 5)

    def forward(self, x):
        return self.linear2(self.batchnorm(self.linear1(x))), self.id


class ModelForTestTiedWeights(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(4, 4)
        self.batchnorm = nn.BatchNorm1d(4)
        self.linear2 = nn.Linear(4, 4)

    def forward(self, x):
        return self.linear2(self.batchnorm(self.linear1(x)))


class BiggerModelForTest(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(3, 4)
        self.linear2 = nn.Linear(4, 5)
        self.batchnorm = nn.BatchNorm1d(5)
        self.linear3 = nn.Linear(5, 6)
        self.linear4 = nn.Linear(6, 5)

    def forward(self, x):
        return self.linear4(self.linear3(self.batchnorm(self.linear2(self.linear1(x)))))


# To test preload_module_classes
class ModuleWithUnusedSubModules(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        return x @ self.linear.weight.t() + self.linear.bias


class ModelWithUnusedSubModulesForTest(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = ModuleWithUnusedSubModules(3, 4)
        self.linear2 = ModuleWithUnusedSubModules(4, 5)
        self.batchnorm = nn.BatchNorm1d(5)
        self.linear3 = ModuleWithUnusedSubModules(5, 6)
        self.linear4 = ModuleWithUnusedSubModules(6, 5)

    def forward(self, x):
        return self.linear4(self.linear3(self.batchnorm(self.linear2(self.linear1(x)))))


class BigModelingTester(unittest.TestCase):
    def test_init_empty_weights(self):
        # base use
        with init_empty_weights():
            module = nn.Linear(4, 5)
        assert module.weight.device == torch.device("meta")

        # base use with buffers, they are not touched
        with init_empty_weights():
            module = nn.BatchNorm1d(4)
        assert module.weight.device == torch.device("meta")
        assert module.running_mean.device == torch.device("cpu")

        # Use with include_buffers=True
        register_parameter_func = nn.Module.register_parameter
        register_buffer_func = nn.Module.register_buffer
        with init_empty_weights(include_buffers=True):
            module = nn.BatchNorm1d(4)
            # nn.Module.register_parameter/buffer shouldn't be changed with torch >= 2.0
            assert register_parameter_func == nn.Module.register_parameter
            assert register_buffer_func == nn.Module.register_buffer
        assert module.weight.device == torch.device("meta")
        assert module.running_mean.device == torch.device("meta")

        # Double check we didn't break PyTorch
        module = nn.BatchNorm1d(4)
        assert module.weight.device == torch.device("cpu")
        assert module.running_mean.device == torch.device("cpu")

    def test_init_empty_weights_very_large_model(self):
        # This is a 100 billion parameters model.
        with init_empty_weights():
            _ = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])

    @require_non_cpu
    def test_init_on_device(self):
        device = torch.device(torch_device)
        with init_on_device(device):
            model = nn.Linear(10, 10)
        assert model.weight.device == device
        assert model.weight.device == device

    def test_cpu_offload(self):
        model = ModelForTest()
        x = torch.randn(2, 3)
        expected = model(x)

        device = torch.device(torch_device)

        cpu_offload(model, execution_device=device)
        output = model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

        # Clean up for next test.
        remove_hook_from_submodules(model)

        cpu_offload(model, execution_device=device, offload_buffers=True)
        output = model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    def test_cpu_offload_with_unused_submodules(self):
        model = ModelWithUnusedSubModulesForTest()
        x = torch.randn(2, 3)
        expected = model(x)

        device = torch.device(torch_device)

        cpu_offload(model, execution_device=device, preload_module_classes=["ModuleWithUnusedSubModules"])
        output = model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

        # Clean up for next test.
        remove_hook_from_submodules(model)

        cpu_offload(
            model,
            execution_device=device,
            offload_buffers=True,
            preload_module_classes=["ModuleWithUnusedSubModules"],
        )
        output = model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @slow
    @require_non_cpu
    def test_cpu_offload_gpt2(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(torch_device)

        gpt2 = AutoModelForCausalLM.from_pretrained("gpt2")
        cpu_offload(gpt2, execution_device=0)
        outputs = gpt2.generate(inputs["input_ids"], max_new_tokens=10)
        assert tokenizer.decode(outputs[0].tolist()) == "Hello world! My name is Kiyoshi, and I'm a student at"

    def test_disk_offload(self):
        model = ModelForTest()
        x = torch.randn(2, 3)
        expected = model(x)

        device = torch.device(torch_device)

        with TemporaryDirectory() as tmp_dir:
            disk_offload(model, tmp_dir, execution_device=device)
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

            # Clean up for next test.
            remove_hook_from_submodules(model)

        with TemporaryDirectory() as tmp_dir:
            disk_offload(model, tmp_dir, execution_device=device, offload_buffers=True)
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    def test_disk_offload_with_unused_submodules(self):
        model = ModelWithUnusedSubModulesForTest()
        x = torch.randn(2, 3)
        expected = model(x)

        device = torch.device(torch_device)

        with TemporaryDirectory() as tmp_dir:
            disk_offload(
                model, tmp_dir, execution_device=device, preload_module_classes=["ModuleWithUnusedSubModules"]
            )
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

            # Clean up for next test.
            remove_hook_from_submodules(model)

        with TemporaryDirectory() as tmp_dir:
            disk_offload(
                model,
                tmp_dir,
                execution_device=device,
                offload_buffers=True,
                preload_module_classes=["ModuleWithUnusedSubModules"],
            )
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @slow
    @require_non_cpu
    def test_disk_offload_gpt2(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(torch_device)

        gpt2 = AutoModelForCausalLM.from_pretrained("gpt2")
        with TemporaryDirectory() as tmp_dir:
            disk_offload(gpt2, tmp_dir, execution_device=0)
            outputs = gpt2.generate(inputs["input_ids"], max_new_tokens=10)
            assert tokenizer.decode(outputs[0].tolist()) == "Hello world! My name is Kiyoshi, and I'm a student at"

    @require_non_cpu
    def test_dispatch_model_and_remove_hook(self):
        model = ModelForTest()
        device_map = {"linear1": "cpu", "batchnorm": "cpu", "linear2": 0}
        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir)
            output = model(x)
            remove_hook_from_submodules(model)
            # need to check if we get any warning
            with self.assertLogs(level="WARNING") as cm:
                # We want to assert there are no warnings, but the 'assertLogs' method does not support that.
                # Therefore, we are adding a dummy warning, and then we will assert it is the only warning.
                model.to(torch_device)
                logger.warning("Dummy warning")
            self.assertEqual(len(cm.records), 1)
            self.assertIn(
                "Dummy warning",
                cm.records[0].message,
            )
            output_bis = model(x.to(torch_device))
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)
            torch.testing.assert_close(expected, output_bis.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_dispatch_model(self):
        model = ModelForTest()
        device_map = {"linear1": "disk", "batchnorm": "cpu", "linear2": 0}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir)
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_dispatch_model_with_non_persistent_buffers(self):
        model = ModelForTestNonPersistentBuffers()
        device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "disk"}
        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir, offload_buffers=True)
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_dispatch_model_tied_weights(self):
        model = ModelForTestTiedWeights()
        model.linear1.weight = model.linear2.weight
        device_map = {"linear1": 0, "batchnorm": 0, "linear2": 0}

        dispatch_model(model, device_map)
        assert model.linear2.weight is model.linear1.weight

    @require_multi_gpu_or_xpu
    def test_dispatch_model_tied_weights_memory(self):
        # Test that we do not duplicate tied weights at any point during dispatch_model call.

        torch_accelerator_module = getattr(torch, torch_device_type)

        clear_device_cache()  # Needed in case we run several tests in a row.

        model = nn.Sequential(
            OrderedDict(
                [
                    ("linear0", nn.Linear(5000, 5000, bias=False)),
                    ("linear1", nn.Linear(5000, 5000, bias=False)),
                    ("linear2", nn.Linear(5000, 5000, bias=False)),
                    ("linear3", nn.Linear(5000, 5000, bias=False)),
                    ("linear4", nn.Linear(5000, 5000, bias=False)),
                ]
            )
        )
        model.linear2.weight = model.linear0.weight
        model.linear3.weight = model.linear0.weight
        model.linear4.weight = model.linear0.weight

        x = torch.randn(5, 5000)
        with torch.no_grad():
            expected = model(x)

        # We should need only 5000 * 5000 * 32 // 8 * 1e-6 = 100 MB on the device 0 for the four linear weights.
        device_0 = f"{torch_device_type}:0" if torch_device != "cpu" else "cpu"
        device_1 = f"{torch_device_type}:1" if torch_device != "cpu" else "cpu"
        device_map = {
            "linear0": device_0,
            "linear1": device_1,
            "linear2": device_0,
            "linear3": device_0,
            "linear4": device_0,
        }

        # Just to initialize CUDA context.
        a = torch.rand(5).to(device_0)  # noqa: F841

        free_memory_bytes = torch_accelerator_module.mem_get_info(device_0)[0]
        required_memory_bytes = 5000 * 5000 * (32 // 8)

        # Leaving 50 MB of free memory for possible buffers, etc.
        n_vals = (free_memory_bytes - required_memory_bytes - int(50e6)) // (32 // 8)
        foo = torch.rand(n_vals, device=device_0)  # noqa: F841

        # If this does OOM: there is an issue in somewhere in dispatch_model, memory of tied weights is duplicated.
        oom_error = (
            torch.OutOfMemoryError if is_torch_version(">=", "2.5.0") else torch_accelerator_module.OutOfMemoryError
        )
        try:
            dispatch_model(model, device_map)
        except oom_error as e:
            raise oom_error(
                f"OOM error in dispatch_model. This is a bug and should not happen, see test_dispatch_model_tied_weights_memory. {e}"
            )
        except Exception as e:
            raise e

        with torch.no_grad():
            output = model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_cuda_or_xpu
    def test_dispatch_model_tied_weights_memory_with_nested_offload_cpu(self):
        # Test that we do not duplicate tied weights at any point during dispatch_model call.

        torch_accelerator_module = getattr(torch, torch_device_type)
        clear_device_cache()  # Needed in case we run several tests in a row.

        class SubModule(torch.nn.Module):
            def __init__(self, ref_to_parameter):
                super().__init__()
                self.parameter = ref_to_parameter

            def forward(self, x):
                return x + torch.max(self.parameter)

        class LinearModuleAndSubModule(torch.nn.Linear):
            def __init__(self, in_features, out_features):
                super().__init__(in_features, out_features, bias=False)
                self.weight_submodule = SubModule(self.weight)
                self.weight_submodule2 = SubModule(self.weight)
                self.weight_submodule3 = SubModule(self.weight)
                self.weight_submodule4 = SubModule(self.weight)

            def forward(self, x):
                a = torch.nn.functional.linear(self.weight_submodule(x), self.weight)
                b = torch.nn.functional.linear(self.weight_submodule2(x), self.weight)
                c = torch.nn.functional.linear(self.weight_submodule3(x), self.weight)
                d = torch.nn.functional.linear(self.weight_submodule4(x), self.weight)
                return a + b + c + d

        class ModelWithSubmodules(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.compute = LinearModuleAndSubModule(5000, 5000)
                self.compute1 = LinearModuleAndSubModule(5000, 5000)

            def forward(self, x):
                a = self.compute(x)
                b = self.compute1(x)
                return a + b

        # We should need only 2 * 5000 * 5000 * 32 // 8 * 1e-6 = 200 MB on the device 0 for the whole model forward, and not 600 MB.
        device_map = {"compute": torch_device, "compute1": "cpu"}

        model = ModelWithSubmodules()

        x = torch.randn(1, 5000)
        with torch.no_grad():
            expected = model(x)

        # Just to initialize accelerator context.
        a = torch.rand(5).to(torch_device)  # noqa: F841

        free_memory_bytes = torch_accelerator_module.mem_get_info(torch_device)[0]
        required_memory_bytes = 2 * 5000 * 5000 * (32 // 8)  # 200 MB

        # Leaving 150 MB of free memory for possible buffers, etc.
        n_vals = (free_memory_bytes - required_memory_bytes - int(150e6)) // (32 // 8)
        foo = torch.rand(n_vals, device=torch_device)  # noqa: F841

        free_memory_bytes_before_dispatch = torch_accelerator_module.mem_get_info(torch_device)[0]
        dispatch_model(model, device_map)
        free_memory_bytes_after_dispatch = torch_accelerator_module.mem_get_info(torch_device)[0]

        assert (free_memory_bytes_after_dispatch - free_memory_bytes_before_dispatch) * 1e-6 < 130

        original_pointer = model.compute1._hf_hook.weights_map["weight"].data_ptr()

        oom_error = (
            torch.OutOfMemoryError if is_torch_version(">=", "2.5.0") else torch_accelerator_module.OutOfMemoryError
        )
        with torch.no_grad():
            try:
                output = model(x)
            except oom_error as e:
                raise oom_error(
                    f"OOM error in dispatch_model. This is a bug and should not happen, see test_dispatch_model_tied_weights_memory_with_nested_offload_cpu. {e}"
                )
            except Exception as e:
                raise e

        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

        clear_device_cache()

        free_memory_bytes_after_infer = torch_accelerator_module.mem_get_info(torch_device)[0]

        # Check that we have no more references on GPU for the offloaded tied weight.
        assert len(model.compute1.weight_submodule._hf_hook.tied_params_map[original_pointer]) == 0
        assert len(model.compute1._hf_hook.tied_params_map[original_pointer]) == 0
        assert (free_memory_bytes_after_infer - free_memory_bytes_after_dispatch) * 1e-6 < 130

        # Test is flacky otherwise.
        del model
        gc.collect()

    # This test fails because sometimes data_ptr() of compute2.weight is the same as compute1.weight.
    # I checked that the values are not the same but it gives the same address. This does not happen on my local machine.
    @require_cuda_or_xpu
    @unittest.skip(
        "Flaky test, we should have enough coverage with test_dispatch_model_tied_weights_memory_with_nested_offload_cpu test"
    )
    def test_dispatch_model_tied_weights_memory_with_nested_offload_disk(self):
        # Test that we do not duplicate tied weights at any point during dispatch_model call.

        torch_accelerator_module = getattr(torch, torch_device_type)

        clear_device_cache()  # Needed in case we run several tests in a row.

        class SubModule(torch.nn.Module):
            def __init__(self, ref_to_parameter):
                super().__init__()
                self.parameter = ref_to_parameter

            def forward(self, x):
                return x + torch.max(self.parameter)

        class LinearModuleAndSubModule(torch.nn.Linear):
            def __init__(self, in_features, out_features):
                super().__init__(in_features, out_features, bias=False)
                self.weight_submodule = SubModule(self.weight)
                self.weight_submodule2 = SubModule(self.weight)
                self.weight_submodule3 = SubModule(self.weight)
                self.weight_submodule4 = SubModule(self.weight)

            def forward(self, x):
                a = torch.nn.functional.linear(self.weight_submodule(x), self.weight)
                b = torch.nn.functional.linear(self.weight_submodule2(x), self.weight)
                c = torch.nn.functional.linear(self.weight_submodule3(x), self.weight)
                d = torch.nn.functional.linear(self.weight_submodule4(x), self.weight)
                return a + b + c + d

        class ModelWithSubmodules(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.compute = LinearModuleAndSubModule(5000, 5000)
                self.compute1 = LinearModuleAndSubModule(5000, 5000)

            def forward(self, x):
                a = self.compute(x)
                b = self.compute1(x)
                return a + b

        # We should need only 2 * 5000 * 5000 * 32 // 8 * 1e-6 = 200 MB on the device 0 for the whole model forward, and not 600 MB.
        device_map = {"compute": 0, "compute1": "disk"}

        model = ModelWithSubmodules()

        x = torch.randn(1, 5000)
        with torch.no_grad():
            expected = model(x)

        # Just to initialize CUDA context.
        device_0 = f"{torch_device_type}:0"
        a = torch.rand(5).to(device_0)  # noqa: F841

        free_memory_bytes = torch_accelerator_module.mem_get_info(device_0)[0]
        required_memory_bytes = 2 * 5000 * 5000 * (32 // 8)  # 200 MB

        # Leaving 150 MB of free memory for possible buffers, etc.
        n_vals = (free_memory_bytes - required_memory_bytes - int(200e6)) // (32 // 8)
        foo = torch.rand(n_vals, device=device_0)  # noqa: F841

        free_memory_bytes_before_dispatch = torch_accelerator_module.mem_get_info(device_0)[0]
        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir)
            free_memory_bytes_after_dispatch = torch_accelerator_module.mem_get_info(device_0)[0]

            assert (free_memory_bytes_after_dispatch - free_memory_bytes_before_dispatch) * 1e-6 < 130

            oom_error = (
                torch.OutOfMemoryError
                if hasattr(torch, "OutOfMemoryError")
                else torch_accelerator_module.OutOfMemoryError
            )
            with torch.no_grad():
                try:
                    output = model(x)
                except oom_error as e:
                    raise oom_error(
                        f"OOM error in dispatch_model. This is a bug and should not happen, see test_dispatch_model_tied_weights_memory_with_nested_offload_disk. {e}"
                    )
                except Exception as e:
                    raise e

            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

            clear_device_cache()

            free_memory_bytes_after_infer = torch_accelerator_module.mem_get_info(device_0)[0]

            # Check that we have no more references on GPU for the offloaded tied weight.
            n_non_empty = 0
            for pointer, pointer_dict in model.compute1.weight_submodule._hf_hook.tied_params_map.items():
                if len(pointer_dict) > 0:
                    n_non_empty += 1
            assert n_non_empty == 1  # `compute` layer one.

            n_non_empty = 0
            for pointer, pointer_dict in model.compute1._hf_hook.tied_params_map.items():
                if len(pointer_dict) > 0:
                    n_non_empty += 1
            assert n_non_empty == 1  # `compute` layer one.

            assert (free_memory_bytes_after_infer - free_memory_bytes_after_dispatch) * 1e-6 < 130

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_dispatch_model_multi_devices(self):
        model = BiggerModelForTest()

        device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 1}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir)
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_dispatch_model_copy(self):
        original_model = ModelForTestCopy(id=1)
        device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 0}

        x = torch.randn(2, 3)
        expected, original_output_id = original_model(x)

        dispatch_model(original_model, device_map)

        copied_model = copy.deepcopy(original_model)
        copied_model.id = 2
        output, copied_output_id = copied_model(x)

        assert original_model.id == original_output_id
        assert copied_model.id == copied_output_id
        assert copied_model.linear1.forward is not original_model.linear1.forward
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_dispatch_model_move_offloaded_model(self):
        model = ModelForTest()
        device_map = {"linear1": "disk", "batchnorm": "cpu", "linear2": 0}
        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir)
            with self.assertRaises(RuntimeError):
                model.to(0)

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_dispatch_model_move_model_warning(self):
        model = ModelForTest()
        device_map = {"linear1": 0, "batchnorm": 0, "linear2": 1}
        with TemporaryDirectory() as tmp_dir:
            dispatch_model(model, device_map, offload_dir=tmp_dir)
            with self.assertLogs("accelerate.big_modeling", level="WARNING"):
                model.to("cpu")
            with self.assertLogs("accelerate.big_modeling", level="WARNING"):
                model.to(torch_device)
            with self.assertRaises(RuntimeError):
                x = torch.randn(2, 3)
                model(x)

    @slow
    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_dispatch_model_gpt2_on_two_devices(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(torch_device)

        gpt2 = AutoModelForCausalLM.from_pretrained("gpt2")
        # Dispatch on GPUs 0 and 1
        device_map = {
            "transformer.wte": 0,
            "transformer.wpe": 0,
            "transformer.ln_f": 1,
            "lm_head": 0,
        }
        for i in range(12):
            device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1

        gpt2 = dispatch_model(gpt2, device_map)
        outputs = gpt2.generate(inputs["input_ids"], max_new_tokens=10)
        assert tokenizer.decode(outputs[0].tolist()) == "Hello world! My name is Kiyoshi, and I'm a student at"

        # Dispatch with a bit of CPU offload
        gpt2 = AutoModelForCausalLM.from_pretrained("gpt2")
        for i in range(4):
            device_map[f"transformer.h.{i}"] = "cpu"
        gpt2 = dispatch_model(gpt2, device_map)
        outputs = gpt2.generate(inputs["input_ids"], max_new_tokens=10)
        assert tokenizer.decode(outputs[0].tolist()) == "Hello world! My name is Kiyoshi, and I'm a student at"
        # Dispatch with a bit of CPU and disk offload
        gpt2 = AutoModelForCausalLM.from_pretrained("gpt2")
        for i in range(2):
            device_map[f"transformer.h.{i}"] = "disk"

        with TemporaryDirectory() as tmp_dir:
            state_dict = {
                k: p for k, p in gpt2.state_dict().items() if "transformer.h.0" in k or "transformer.h.1" in k
            }
            offload_state_dict(tmp_dir, state_dict)
            gpt2 = dispatch_model(gpt2, device_map, offload_dir=tmp_dir)
            outputs = gpt2.generate(inputs["input_ids"], max_new_tokens=10)
            assert tokenizer.decode(outputs[0].tolist()) == "Hello world! My name is Kiyoshi, and I'm a student at"

    @require_non_cpu
    def test_dispatch_model_with_unused_submodules(self):
        model = ModelWithUnusedSubModulesForTest()
        device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 0}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            dispatch_model(
                model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"]
            )
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_dispatch_model_with_unused_submodules_multi_device(self):
        model = ModelWithUnusedSubModulesForTest()

        device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 1}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            dispatch_model(
                model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"]
            )
            output = model(x)
            torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_dispatch_model_force_hooks(self):
        model = ModelForTest()
        device_map = {"": 0}

        x = torch.randn(2, 3)
        expected = model(x)

        dispatch_model(model, device_map, force_hooks=True)
        output = model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_load_checkpoint_and_dispatch(self):
        model = ModelForTest()
        device_map = {"linear1": "cpu", "batchnorm": "cpu", "linear2": 0}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            checkpoint = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), checkpoint)

            new_model = ModelForTest()
            new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=device_map)

        # CPU-offloaded weights are on the meta device while waiting for the forward pass.
        assert new_model.linear1.weight.device == torch.device("meta")
        assert new_model.linear2.weight.device == torch.device(torch_device)

        output = new_model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    def test_load_checkpoint_and_dispatch_device_map_none(self):
        model = ModelForTest()

        with TemporaryDirectory() as tmp_dir:
            checkpoint = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), checkpoint)

            new_model = ModelForTest()
            new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=None)

        for (name, tensor), (new_name, new_tensor) in zip(
            itertools.chain(model.named_parameters(), model.named_buffers()),
            itertools.chain(new_model.named_parameters(), new_model.named_buffers()),
        ):
            assert name == new_name
            torch.testing.assert_close(tensor, new_tensor, msg=new_name)

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_load_checkpoint_and_dispatch_multi_device(self):
        model = BiggerModelForTest()

        device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 1}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            checkpoint = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), checkpoint)

            new_model = BiggerModelForTest()
            new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=device_map)

        # CPU-offloaded weights are on the meta device while waiting for the forward pass.
        assert new_model.linear1.weight.device == torch.device("meta")
        assert new_model.linear2.weight.device == torch.device("meta")
        assert new_model.linear3.weight.device == torch.device(torch_device)
        assert new_model.linear4.weight.device == torch.device(torch_device.replace(":0", ":1"))

        output = new_model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_load_checkpoint_and_dispatch_with_unused_submodules(self):
        model = ModelWithUnusedSubModulesForTest()
        device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 0}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            checkpoint = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), checkpoint)

            new_model = ModelWithUnusedSubModulesForTest()
            new_model = load_checkpoint_and_dispatch(
                new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"]
            )

        # CPU-offloaded weights are on the meta device while waiting for the forward pass.
        assert new_model.linear1.linear.weight.device == torch.device("meta")
        assert new_model.linear2.linear.weight.device == torch.device("meta")
        assert new_model.linear3.linear.weight.device == torch.device(torch_device)
        assert new_model.linear4.linear.weight.device == torch.device(torch_device)

        output = new_model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_load_checkpoint_and_dispatch_multi_device_with_unused_submodules(self):
        model = ModelWithUnusedSubModulesForTest()

        device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 1}

        x = torch.randn(2, 3)
        expected = model(x)

        with TemporaryDirectory() as tmp_dir:
            checkpoint = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), checkpoint)

            new_model = ModelWithUnusedSubModulesForTest()
            new_model = load_checkpoint_and_dispatch(
                new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"]
            )

        # CPU-offloaded weights are on the meta device while waiting for the forward pass.
        assert new_model.linear1.linear.weight.device == torch.device("meta")
        assert new_model.linear2.linear.weight.device == torch.device("meta")
        assert new_model.linear3.linear.weight.device == torch.device(torch_device)
        assert new_model.linear4.linear.weight.device == torch.device(torch_device.replace(":0", ":1"))

        output = new_model(x)
        torch.testing.assert_close(expected, output.cpu(), atol=ATOL, rtol=RTOL)

    @require_non_cpu
    def test_cpu_offload_with_hook(self):
        model1 = torch.nn.Linear(4, 5)
        model1, hook1 = cpu_offload_with_hook(model1)
        assert model1.weight.device == torch.device("cpu")

        inputs = torch.randn(3, 4)
        outputs = model1(inputs)
        assert outputs.device == torch.device(torch_device)
        assert model1.weight.device == torch.device(torch_device)

        hook1.offload()
        assert model1.weight.device == torch.device("cpu")

        model2 = torch.nn.Linear(5, 5)
        model2, hook2 = cpu_offload_with_hook(model2, prev_module_hook=hook1)
        assert model2.weight.device == torch.device("cpu")

        outputs = model1(inputs)
        assert outputs.device == torch.device(torch_device)
        assert model1.weight.device == torch.device(torch_device)

        outputs = model2(outputs)
        assert outputs.device == torch.device(torch_device)
        assert model1.weight.device == torch.device("cpu")
        assert model2.weight.device == torch.device(torch_device)

        hook2.offload()
        assert model2.weight.device == torch.device("cpu")

    @slow
    @require_bnb
    @require_non_hpu  # bnb is not supported on hpu
    @require_non_torch_xla
    @require_multi_device
    def test_dispatch_model_bnb(self):
        """Tests that `dispatch_model` quantizes int8 layers"""
        from huggingface_hub import hf_hub_download
        from transformers import AutoConfig, AutoModel, BitsAndBytesConfig
        from transformers.utils.bitsandbytes import replace_with_bnb_linear

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin")

        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map="balanced",
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.int8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0

        assert model.h[(-1)].self_attention.query_key_value.weight.dtype == torch.int8
        assert model.h[(-1)].self_attention.query_key_value.weight.device.index == 1

    @require_cuda_or_xpu
    @slow
    @require_bnb
    def test_dispatch_model_int8_simple(self):
        """Tests that `dispatch_model` quantizes int8 layers"""
        from huggingface_hub import hf_hub_download
        from transformers import AutoConfig, AutoModel, BitsAndBytesConfig
        from transformers.utils.bitsandbytes import replace_with_bnb_linear

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin")

        # test with auto
        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map="auto",
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.int8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        # test with str device map
        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map={"": torch_device},
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.int8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        # test with torch.device device map
        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map={"": torch_device},
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.int8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0

    @require_cuda_or_xpu
    @slow
    @require_bnb
    def test_dipatch_model_fp4_simple(self):
        """Tests that `dispatch_model` quantizes fp4 layers"""
        from huggingface_hub import hf_hub_download
        from transformers import AutoConfig, AutoModel, BitsAndBytesConfig
        from transformers.utils.bitsandbytes import replace_with_bnb_linear

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        quantization_config = BitsAndBytesConfig(load_in_4bit=True)

        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin")

        # test with auto
        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map="auto",
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        # test with str device map
        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map={"": torch_device},
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0

        with init_empty_weights():
            model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m"))

        model = replace_with_bnb_linear(
            model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config
        )

        # test with torch.device device map
        model = load_checkpoint_and_dispatch(
            model,
            checkpoint=model_path,
            device_map={"": torch_device},
        )

        assert model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8
        assert model.h[0].self_attention.query_key_value.weight.device.index == 0