File: test_fp8.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (286 lines) | stat: -rw-r--r-- 10,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import os
import tempfile
import textwrap
import unittest
from pathlib import Path

import torch

from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import (
    get_launch_command,
    require_cuda_or_hpu,
    require_huggingface_suite,
    require_multi_device,
    require_torchao,
    require_transformer_engine,
    require_transformer_engine_mxfp8,
    run_first,
)
from accelerate.test_utils.testing import require_deepspeed, run_command
from accelerate.utils import (
    AORecipeKwargs,
    TERecipeKwargs,
    has_ao_layers,
    has_transformer_engine_layers,
)


def can_convert_te_model(from_config=False):
    if not from_config:
        accelerator_kwargs = {"mixed_precision": "fp8", "kwargs_handlers": [TERecipeKwargs()]}
    else:
        accelerator_kwargs = {}

    accelerator = Accelerator(**accelerator_kwargs)
    assert accelerator.fp8_enabled, "FP8 is not enabled"

    dataloader = torch.utils.data.DataLoader(torch.randn(10, 32), batch_size=2)
    model = torch.nn.Sequential(torch.nn.Linear(32, 32), torch.nn.LayerNorm(32, bias=False), torch.nn.Linear(32, 16))
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)

    model, optimizer, dataloader, scheduler = accelerator.prepare(model, optimizer, dataloader, scheduler)
    assert has_transformer_engine_layers(model)


def maintain_proper_deepspeed_config(expected_version):
    assert AcceleratorState().deepspeed_plugin.zero_stage == expected_version, (
        f"Expected zero stage {expected_version} but got {AcceleratorState().deepspeed_plugin.zero_stage}"
    )


def can_convert_ao_model(from_config=False):
    from transformers import AutoModelForSequenceClassification

    if not from_config:
        accelerator_kwargs = {"mixed_precision": "fp8", "kwargs_handlers": [AORecipeKwargs()]}
    else:
        accelerator_kwargs = {}

    accelerator = Accelerator(**accelerator_kwargs)
    dataloader = torch.utils.data.DataLoader(torch.randn(10, 32), batch_size=2)
    model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased")
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)

    model, optimizer, dataloader, scheduler = accelerator.prepare(model, optimizer, dataloader, scheduler)
    assert has_ao_layers(model)


@run_first
@require_transformer_engine
@require_cuda_or_hpu
class TestTransformerEngine(unittest.TestCase):
    def test_can_prepare_model_single_gpu(self):
        command = get_launch_command(num_processes=1, monitor_interval=0.1)
        command += ["-m", "tests.test_fp8", "--test_te"]
        run_command(command)

    def test_can_prepare_model_single_gpu_from_config(self):
        with tempfile.TemporaryDirectory() as dir_name:
            config_file = Path(dir_name) / "config.yaml"
            config_file.write_text(
                textwrap.dedent(
                    """
                    distributed_type: "NO"
                    num_processes: 1
                    mixed_precision: fp8
                    fp8_config:
                      backend: TE
                    """
                )
            )
            command = get_launch_command(config_file=str(config_file), monitor_interval=0.1)
            command += ["-m", "tests.test_fp8", "--test_te", "--from_config"]
            run_command(command)

    @require_transformer_engine_mxfp8
    def test_can_prepare_model_with_mxfp8_block_scaling(self):
        with tempfile.TemporaryDirectory() as dir_name:
            config_file = Path(dir_name) / "config.yaml"
            config_file.write_text(
                textwrap.dedent(
                    """
                    distributed_type: "NO"
                    num_processes: 1
                    mixed_precision: fp8
                    fp8_config:
                      backend: TE
                      use_mxfp8_block_scaling: true
                    """
                )
            )
            command = get_launch_command(config_file=str(config_file), monitor_interval=0.1)
            command += ["-m", "tests.test_fp8", "--test_te", "--from_config"]
            run_command(command)

    @require_multi_device
    def test_can_prepare_model_multi_gpu(self):
        command = get_launch_command(num_processes=2, monitor_interval=0.1)
        command += ["-m", "tests.test_fp8", "--test_te"]
        run_command(command)

    @require_deepspeed
    @require_multi_device
    def test_can_prepare_model_multigpu_deepspeed(self):
        for zero_stage in [1, 2, 3]:
            os.environ["ZERO_STAGE"] = str(zero_stage)
            ds_config = {
                "bf16": {"enabled": True},
                "zero_optimization": {
                    "stage": zero_stage,
                    "allgather_partitions": True,
                    "allgather_bucket_size": 2e8,
                    "overlap_comm": True,
                    "reduce_scatter": True,
                    "reduce_bucket_size": 2e8,
                    "contiguous_gradients": True,
                },
                "gradient_accumulation_steps": 1,
                "gradient_clipping": "auto",
                "steps_per_print": 2000,
                "train_batch_size": "auto",
                "train_micro_batch_size_per_gpu": "auto",
                "wall_clock_breakdown": False,
            }

            ds_config = json.dumps(ds_config)

            command = get_launch_command(
                num_processes=2, monitor_interval=0.1, use_deepspeed=True, deepspeed_config_file=ds_config
            )
            command += ["-m", "tests.test_fp8", "--test_te"]
            run_command(command)

    @require_deepspeed
    @require_multi_device
    def test_can_prepare_model_multigpu_deepspeed_from_config(self):
        os.environ["ZERO_STAGE"] = str(1)
        with tempfile.TemporaryDirectory() as dir_name:
            config_file = Path(dir_name) / "config.yaml"
            config_file.write_text(
                textwrap.dedent(
                    """
                    distributed_type: "DEEPSPEED"
                    deepspeed_config:
                      gradient_clipping: 1.0
                      gradient_accumulation_steps: 1
                      offload_optimizer_device: none
                      offload_param_device: none
                      zero3_init_flag: false
                      zero_stage: 1
                      deepspeed_multinode_launcher: standard
                    num_processes: 2
                    mixed_precision: fp8
                    fp8_config:
                      backend: TE
                    """
                )
            )
            command = get_launch_command(config_file=str(config_file), monitor_interval=0.1)
            command += ["-m", "tests.test_fp8", "--test_te", "--from_config"]
            run_command(command)


@require_torchao
@require_huggingface_suite
class TestTorchAO(unittest.TestCase):
    def test_can_prepare_model_single_accelerator(self):
        command = get_launch_command(num_processes=1, monitor_interval=0.1)
        command += ["-m", "tests.test_fp8", "--test_ao"]
        run_command(command)

    def test_can_prepare_model_single_gpu_from_config(self):
        with tempfile.TemporaryDirectory() as dir_name:
            config_file = Path(dir_name) / "config.yaml"
            config_file.write_text(
                textwrap.dedent(
                    """
                    distributed_type: "NO"
                    num_processes: 1
                    mixed_precision: fp8
                    fp8_config:
                      backend: AO
                    """
                )
            )
            command = get_launch_command(config_file=str(config_file), monitor_interval=0.1)
            command += ["-m", "tests.test_fp8", "--test_ao", "--from_config"]
            run_command(command)

    @require_multi_device
    def test_can_prepare_model_multi_accelerator(self):
        command = get_launch_command(num_processes=2, monitor_interval=0.1)
        command += ["-m", "tests.test_fp8", "--test_ao"]
        run_command(command)

    @require_deepspeed
    @require_multi_device
    def test_can_prepare_model_multi_accelerator_deepspeed(self):
        for zero_stage in [1, 2, 3]:
            os.environ["ZERO_STAGE"] = str(zero_stage)
            ds_config = {
                "bf16": {"enabled": True},
                "zero_optimization": {
                    "stage": zero_stage,
                    "allgather_partitions": True,
                    "allgather_bucket_size": 2e8,
                    "overlap_comm": True,
                    "reduce_scatter": True,
                    "reduce_bucket_size": 2e8,
                    "contiguous_gradients": True,
                },
                "gradient_accumulation_steps": 1,
                "gradient_clipping": "auto",
                "steps_per_print": 2000,
                "train_batch_size": "auto",
                "train_micro_batch_size_per_gpu": "auto",
                "wall_clock_breakdown": False,
            }

            ds_config = json.dumps(ds_config)

            command = get_launch_command(
                num_processes=2, monitor_interval=0.1, use_deepspeed=True, deepspeed_config_file=ds_config
            )
            command += ["-m", "tests.test_fp8", "--test_ao"]
            run_command(command)


if __name__ == "__main__":
    # TE suite
    parser = argparse.ArgumentParser()
    parser.add_argument("--test_te", action="store_true", default=False)
    parser.add_argument("--test_ao", action="store_true", default=False)
    parser.add_argument("--from_config", action="store_true", default=False)
    args = parser.parse_args()

    if not args.test_te and not args.test_ao:
        raise ValueError("Must specify at least one of --test_te or --test_ao")

    if args.test_te:
        can_convert_te_model(args.from_config)
        if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true":
            maintain_proper_deepspeed_config(int(os.environ.get("ZERO_STAGE")))

    # AO suite
    if args.test_ao:
        can_convert_ao_model(args.from_config)