File: test_modeling_utils.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (1067 lines) | stat: -rw-r--r-- 47,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import tempfile
import unittest
import warnings
from collections import OrderedDict
from typing import Optional

import torch
import torch.nn as nn
from parameterized import parameterized
from safetensors.torch import save_file

from accelerate import init_empty_weights
from accelerate.big_modeling import cpu_offload
from accelerate.test_utils import (
    require_huggingface_suite,
    require_multi_device,
    require_non_cpu,
    require_non_hpu,
    torch_device,
)
from accelerate.utils.modeling import (
    align_module_device,
    check_device_map,
    clean_device_map,
    compute_module_sizes,
    compute_module_total_buffer_size,
    convert_file_size_to_int,
    find_tied_parameters,
    get_balanced_memory,
    get_module_size_with_ties,
    get_state_dict_offloaded_model,
    infer_auto_device_map,
    load_checkpoint_in_model,
    load_state_dict,
    named_module_tensors,
    retie_parameters,
    set_module_tensor_to_device,
)


torch_device = f"{torch_device}:0" if torch_device != "cpu" else "cpu"


class ModelForTest(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(3, 4)
        self.batchnorm = nn.BatchNorm1d(4)
        self.linear2 = nn.Linear(4, 5)

    def forward(self, x):
        return self.linear2(self.batchnorm(self.linear1(x)))


class NestedModelForTest(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = ModelForTest()

    def forward(self, x):
        return self.model(x)


class LinearWithNonPersistentBuffers(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.register_buffer("weight", torch.empty((out_features, in_features), **factory_kwargs))
        if bias:
            self.register_buffer("bias", torch.empty(out_features, **factory_kwargs), persistent=False)
        else:
            self.register_buffer("bias", None)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return torch.nn.functional.linear(input, self.weight, self.bias)


class ModelSeveralDtypes(nn.Module):
    def __init__(self):
        super().__init__()
        self.register_buffer("int_param", torch.randint(high=10, size=(15, 30)))
        self.register_parameter("float_param", torch.nn.Parameter(torch.rand(10, 5)))

    def forward(self, x):
        return x + 2


def sequential_model(num_layers):
    layers = OrderedDict([(f"linear{i}", nn.Linear(1000, 1000)) for i in range(1, num_layers + 1)])
    return nn.Sequential(layers)


class ModelingUtilsTester(unittest.TestCase):
    def check_set_module_tensor_for_device(self, model, device1, device2):
        assert model.linear1.weight.device == torch.device(device1)

        with self.subTest("Access by submodule and direct name for a parameter"):
            set_module_tensor_to_device(model.linear1, "weight", device2)
            assert model.linear1.weight.device == torch.device(device2)

            if torch.device(device2) == torch.device("meta"):
                with self.assertRaises(ValueError):
                    # We need a `value` to set the weight back on device1
                    set_module_tensor_to_device(model.linear1, "weight", device1)

                set_module_tensor_to_device(model.linear1, "weight", device1, value=torch.randn(4, 3))
            else:
                set_module_tensor_to_device(model.linear1, "weight", device1)
            assert model.linear1.weight.device == torch.device(device1)

        with self.subTest("Access by module and full name for a parameter"):
            set_module_tensor_to_device(model, "linear1.weight", device2)
            assert model.linear1.weight.device == torch.device(device2)

            if torch.device(device2) == torch.device("meta"):
                with self.assertRaises(ValueError):
                    # We need a `value` to set the weight back on device1
                    set_module_tensor_to_device(model, "linear1.weight", device1)
                set_module_tensor_to_device(model, "linear1.weight", device1, value=torch.randn(4, 3))
            else:
                set_module_tensor_to_device(model, "linear1.weight", device1)
            assert model.linear1.weight.device == torch.device(device1)

        assert model.batchnorm.running_mean.device == torch.device(device1)

        with self.subTest("Access by submodule and direct name for a buffer"):
            set_module_tensor_to_device(model.batchnorm, "running_mean", device2)
            assert model.batchnorm.running_mean.device == torch.device(device2)

            if torch.device(device2) == torch.device("meta"):
                with self.assertRaises(ValueError):
                    # We need a `value` to set the weight back on device1
                    set_module_tensor_to_device(model.batchnorm, "running_mean", device1)
                set_module_tensor_to_device(model.batchnorm, "running_mean", device1, value=torch.randn(4))
            else:
                set_module_tensor_to_device(model.batchnorm, "running_mean", device1)
            assert model.batchnorm.running_mean.device == torch.device(device1)

        with self.subTest("Access by module and full name for a parameter"):
            set_module_tensor_to_device(model, "batchnorm.running_mean", device2)
            assert model.batchnorm.running_mean.device == torch.device(device2)

            if torch.device(device2) == torch.device("meta"):
                with self.assertRaises(ValueError):
                    # We need a `value` to set the weight back on CPU
                    set_module_tensor_to_device(model, "batchnorm.running_mean", device1)

                set_module_tensor_to_device(model, "batchnorm.running_mean", device1, value=torch.randn(4))
            else:
                set_module_tensor_to_device(model, "batchnorm.running_mean", device1)
            assert model.batchnorm.running_mean.device == torch.device(device1)

    def test_set_module_tensor_to_meta_and_cpu(self):
        model = ModelForTest()
        self.check_set_module_tensor_for_device(model, "cpu", "meta")

    @require_non_cpu
    def test_set_module_tensor_to_cpu_and_gpu(self):
        model = ModelForTest()
        self.check_set_module_tensor_for_device(model, "cpu", torch_device)

    @require_non_cpu
    def test_set_module_tensor_to_meta_and_gpu(self):
        model = ModelForTest().to(torch_device)
        self.check_set_module_tensor_for_device(model, torch_device, "meta")

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_set_module_tensor_between_gpus(self):
        model = ModelForTest().to(torch_device)
        self.check_set_module_tensor_for_device(model, torch_device, torch_device.replace("0", "1"))

    def test_set_module_tensor_sets_dtype(self):
        model = ModelForTest()
        set_module_tensor_to_device(model, "linear1.weight", "cpu", value=model.linear1.weight, dtype=torch.float16)
        assert model.linear1.weight.dtype == torch.float16

    def test_set_module_tensor_checks_shape(self):
        model = ModelForTest()
        tensor = torch.zeros((2, 2))
        with self.assertRaises(ValueError) as cm:
            set_module_tensor_to_device(model, "linear1.weight", "cpu", value=tensor)
        assert (
            str(cm.exception)
            == 'Trying to set a tensor of shape torch.Size([2, 2]) in "weight" (which has shape torch.Size([4, 3])), this looks incorrect.'
        )

    def test_named_tensors(self):
        model = nn.BatchNorm1d(4)
        named_tensors = named_module_tensors(model)
        assert [name for name, _ in named_tensors] == [
            "weight",
            "bias",
            "running_mean",
            "running_var",
            "num_batches_tracked",
        ]

        named_tensors = named_module_tensors(model, include_buffers=False)
        assert [name for name, _ in named_tensors] == ["weight", "bias"]

        model = ModelForTest()
        named_tensors = named_module_tensors(model)
        assert [name for name, _ in named_tensors] == []

        named_tensors = named_module_tensors(model, recurse=True)
        assert [name for name, _ in named_tensors] == [
            "linear1.weight",
            "linear1.bias",
            "batchnorm.weight",
            "batchnorm.bias",
            "linear2.weight",
            "linear2.bias",
            "batchnorm.running_mean",
            "batchnorm.running_var",
            "batchnorm.num_batches_tracked",
        ]

        named_tensors = named_module_tensors(model, include_buffers=False, recurse=True)
        assert [name for name, _ in named_tensors] == [
            "linear1.weight",
            "linear1.bias",
            "batchnorm.weight",
            "batchnorm.bias",
            "linear2.weight",
            "linear2.bias",
        ]

        model = LinearWithNonPersistentBuffers(10, 10)

        named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=False)
        assert [name for name, _ in named_tensors] == ["weight", "bias"]

        named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=True)
        assert [name for name, _ in named_tensors] == ["weight"]

    def test_find_tied_parameters(self):
        model = sequential_model(4)
        assert find_tied_parameters(model) == []

        model.linear2.weight = model.linear1.weight
        assert find_tied_parameters(model) == [["linear1.weight", "linear2.weight"]]

        model.linear4.weight = model.linear1.weight
        assert find_tied_parameters(model) == [["linear1.weight", "linear2.weight", "linear4.weight"]]

        model = sequential_model(5)
        model.linear1.weight = model.linear4.weight
        model.linear2.weight = model.linear3.weight
        model.linear5.weight = model.linear2.weight
        tied_params = sorted(find_tied_parameters(model), key=lambda x: len(x))
        assert tied_params == [
            ["linear1.weight", "linear4.weight"],
            ["linear2.weight", "linear3.weight", "linear5.weight"],
        ]

        model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))]))
        model.block1.linear1.weight = model.block2.linear1.weight
        assert find_tied_parameters(model) == [["block1.linear1.weight", "block2.linear1.weight"]]

        layer = nn.Linear(10, 10)
        model = nn.Sequential(layer, layer)
        tied_params = find_tied_parameters(model)
        assert sorted(tied_params) == [["0.bias", "1.bias"], ["0.weight", "1.weight"]]

    def test_retie_parameters(self):
        model = sequential_model(2)
        retie_parameters(model, [["linear1.weight", "linear2.weight"]])
        assert model.linear1.weight is model.linear2.weight

        model = sequential_model(3)
        retie_parameters(model, [["linear1.weight", "linear2.weight", "linear3.weight"]])

        assert model.linear1.weight is model.linear2.weight
        assert model.linear1.weight is model.linear3.weight

        model = sequential_model(5)
        retie_parameters(
            model, [["linear1.weight", "linear4.weight"], ["linear2.weight", "linear3.weight", "linear5.weight"]]
        )

        assert model.linear1.weight is model.linear4.weight
        assert model.linear2.weight is model.linear3.weight
        assert model.linear2.weight is model.linear5.weight

        model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))]))
        retie_parameters(model, [["block1.linear1.weight", "block2.linear1.weight"]])

        assert model.block1.linear1.weight is model.block2.linear1.weight

    def test_compute_module_sizes(self):
        model = ModelForTest()
        expected_sizes = {"": 236, "linear1": 64, "linear1.weight": 48, "linear1.bias": 16}
        expected_sizes.update({"linear2": 100, "linear2.weight": 80, "linear2.bias": 20})
        expected_sizes.update({"batchnorm": 72, "batchnorm.weight": 16, "batchnorm.bias": 16})
        expected_sizes.update(
            {"batchnorm.running_mean": 16, "batchnorm.running_var": 16, "batchnorm.num_batches_tracked": 8}
        )

        module_sizes = compute_module_sizes(model)
        assert module_sizes == expected_sizes

        model.half()
        expected_sizes = {k: s // 2 for k, s in expected_sizes.items()}
        # This one is not converted to half.
        expected_sizes["batchnorm.num_batches_tracked"] = 8
        # This impacts batchnorm and total
        expected_sizes["batchnorm"] += 4
        expected_sizes[""] += 4

        module_sizes = compute_module_sizes(model)
        assert module_sizes == expected_sizes

    def test_compute_module_total_buffer_size(self):
        model = ModelForTest()
        model.linear1.register_buffer("test_buffer", torch.zeros(10, 10))
        model.register_buffer("test_buffer2", torch.zeros(20, 10))

        buffer_size = compute_module_total_buffer_size(model)
        assert buffer_size == 1240

        model.half()
        buffer_size = compute_module_total_buffer_size(model)
        assert buffer_size == 624

    def test_check_device_map(self):
        model = ModelForTest()
        check_device_map(model, {"": 0})
        with self.assertRaises(ValueError):
            check_device_map(model, {"linear1": 0, "linear2": 1})

        check_device_map(model, {"linear1": 0, "linear2": 1, "batchnorm": 1})

    def test_check_device_map_invalid_keys(self):
        model = ModelForTest()

        device_map = {
            "linear1": "cpu",  # Valid module
            "batchnorm": "cpu",  # Valid module
            "linear2": "cpu",  # Valid module
            "invalid_module": 0,  # Invalid - should trigger warning
            "another_invalid": 1,  # Invalid - should trigger warning
        }

        # Test for the warning about invalid keys
        with self.assertWarns(UserWarning) as cm:
            check_device_map(model, device_map)

        warning_msg = str(cm.warning)
        self.assertIn("device_map keys do not match any submodules", warning_msg)
        self.assertIn("invalid_module", warning_msg)
        self.assertIn("another_invalid", warning_msg)

    def shard_test_model(self, model, tmp_dir):
        module_index = {
            "linear1": "checkpoint_part1.bin",
            "batchnorm": "checkpoint_part2.bin",
            "linear2": "checkpoint_part3.bin",
        }
        index = {}
        for name, _ in model.state_dict().items():
            module = name.split(".")[0]
            index[name] = module_index[module]

        with open(os.path.join(tmp_dir, "weight_map.index.json"), "w") as f:
            json.dump(index, f)

        for module, fname in module_index.items():
            state_dict = {k: v for k, v in model.state_dict().items() if k.startswith(module)}
            full_fname = os.path.join(tmp_dir, fname)
            torch.save(state_dict, full_fname)

    def test_load_checkpoint_in_model(self):
        # Check with whole checkpoint
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            fname = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), fname)
            load_checkpoint_in_model(model, fname)

        # Check with sharded index
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.shard_test_model(model, tmp_dir)
            index_file = os.path.join(tmp_dir, "weight_map.index.json")
            load_checkpoint_in_model(model, index_file)

        # Check with sharded checkpoint
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.shard_test_model(model, tmp_dir)
            load_checkpoint_in_model(model, tmp_dir)

    @require_non_cpu
    def test_load_checkpoint_in_model_one_gpu(self):
        device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"}

        # Check with whole checkpoint
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            fname = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), fname)
            load_checkpoint_in_model(model, fname, device_map=device_map)
        assert model.linear1.weight.device == torch.device(torch_device)
        assert model.batchnorm.weight.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device("cpu")

        # Check with sharded index
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.shard_test_model(model, tmp_dir)
            index_file = os.path.join(tmp_dir, "weight_map.index.json")
            load_checkpoint_in_model(model, index_file, device_map=device_map)

        assert model.linear1.weight.device == torch.device(torch_device)
        assert model.batchnorm.weight.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device("cpu")

        # Check with sharded checkpoint folder
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.shard_test_model(model, tmp_dir)
            load_checkpoint_in_model(model, tmp_dir, device_map=device_map)

        assert model.linear1.weight.device == torch.device(torch_device)
        assert model.batchnorm.weight.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device("cpu")

    @require_non_cpu
    def test_load_checkpoint_in_model_disk_offload(self):
        device_map = {"linear1": "cpu", "batchnorm": "disk", "linear2": "cpu"}

        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            fname = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), fname)
            load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir)
        assert model.linear1.weight.device == torch.device("cpu")
        assert model.batchnorm.weight.device == torch.device("meta")
        # Buffers are not offloaded by default
        assert model.batchnorm.running_mean.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device("cpu")

        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            fname = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), fname)
            load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir, offload_buffers=True)
        assert model.linear1.weight.device == torch.device("cpu")
        assert model.batchnorm.weight.device == torch.device("meta")
        assert model.batchnorm.running_mean.device == torch.device("meta")
        assert model.linear2.weight.device == torch.device("cpu")

    @require_non_hpu  # hpu does not support device indexing "hpu:1"
    @require_multi_device
    def test_load_checkpoint_in_model_two_gpu(self):
        device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1}

        # Check with whole checkpoint
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            fname = os.path.join(tmp_dir, "pt_model.bin")
            torch.save(model.state_dict(), fname)
            load_checkpoint_in_model(model, fname, device_map=device_map)
        assert model.linear1.weight.device == torch.device(torch_device)
        assert model.batchnorm.weight.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device(torch_device.replace("0", "1"))

        # Check with sharded index
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.shard_test_model(model, tmp_dir)
            index_file = os.path.join(tmp_dir, "weight_map.index.json")
            load_checkpoint_in_model(model, index_file, device_map=device_map)

        assert model.linear1.weight.device == torch.device(torch_device)
        assert model.batchnorm.weight.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device(torch_device.replace("0", "1"))

        # Check with sharded checkpoint
        model = ModelForTest()
        with tempfile.TemporaryDirectory() as tmp_dir:
            self.shard_test_model(model, tmp_dir)
            load_checkpoint_in_model(model, tmp_dir, device_map=device_map)

        assert model.linear1.weight.device == torch.device(torch_device)
        assert model.batchnorm.weight.device == torch.device("cpu")
        assert model.linear2.weight.device == torch.device(torch_device.replace("0", "1"))

    def test_load_checkpoint_in_model_dtype(self):
        with tempfile.NamedTemporaryFile(suffix=".pt") as tmpfile:
            model = ModelSeveralDtypes()
            torch.save(model.state_dict(), tmpfile.name)

            new_model = ModelSeveralDtypes()
            load_checkpoint_in_model(
                new_model, tmpfile.name, offload_state_dict=True, dtype=torch.float16, device_map={"": "cpu"}
            )

            assert new_model.int_param.dtype == torch.int64
            assert new_model.float_param.dtype == torch.float16

    @parameterized.expand([(None,), ({"": "cpu"},)])
    def test_load_checkpoint_in_model_unexpected_keys(self, device_map: Optional[dict]):
        model = ModelForTest()

        state_dict = model.state_dict()
        state_dict["foo"] = torch.rand(4, 5)
        with tempfile.NamedTemporaryFile(suffix=".pt") as tmpfile:
            torch.save(state_dict, tmpfile)

            model = ModelForTest()

            with self.assertLogs() as cm:
                load_checkpoint_in_model(model, tmpfile.name, device_map=device_map)

                self.assertTrue(any("were not used when" in out for out in cm.output))

            with self.assertRaises((ValueError, RuntimeError)):
                load_checkpoint_in_model(model, tmpfile.name, device_map=device_map, strict=True)

    def test_clean_device_map(self):
        # Regroup everything if all is on the same device
        assert clean_device_map({"a": 0, "b": 0, "c": 0}) == {"": 0}
        # Regroups children of level 1 on the same device
        assert clean_device_map({"a.x": 0, "a.y": 0, "b.x": 1, "b.y": 1, "c": 1}) == {"a": 0, "b": 1, "c": 1}
        # Regroups children of level 2 on the same device
        assert clean_device_map({"a.x": 0, "a.y": 0, "b.x.0": 1, "b.x.1": 1, "b.y.0": 2, "b.y.1": 2, "c": 2}) == {
            "a": 0,
            "b.x": 1,
            "b.y": 2,
            "c": 2,
        }

    def test_infer_auto_device_map(self):
        model = ModelForTest()
        # model has size 236: linear1 64, batchnorm 72, linear2 100
        try:
            with self.assertLogs() as cm:
                device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200})
                self.assertFalse(any("insufficient memory" in out for out in cm.output))
        except AssertionError:
            # No logs exist; test passes implicitly
            pass

        # only linear1 fits on device 0 as we keep memory available for the maximum layer in case of offload
        assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": 1}

        device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 172, 2: 200})
        # On device 1, we don't care about keeping size available for the max layer, so even if there is just the
        # size available for batchnorm + linear2, they fit here.
        assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": 1}

        model.linear1.weight = model.linear2.weight
        device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200})
        # By tying weights, the whole model fits on device 0
        assert device_map == {"": 0}

        # When splitting a bigger model, the split is done at the layer level
        model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest())
        device_map = infer_auto_device_map(model, max_memory={0: 500, 1: 500})
        assert device_map == {"0": 0, "1.linear1": 0, "1.batchnorm": 0, "1.linear2": 1, "2": 1}

        # With no_split_module_classes, it's done at that module level
        model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest())
        device_map = infer_auto_device_map(
            model, max_memory={0: 500, 1: 500}, no_split_module_classes=["ModelForTest"]
        )
        assert device_map == {"0": 0, "1": 1, "2": 1}

    def test_infer_auto_device_map_with_tied_weights(self):
        model = nn.Sequential(
            OrderedDict([("layer1", ModelForTest()), ("layer2", ModelForTest()), ("layer3", ModelForTest())])
        )
        model.layer3.linear2.weight = model.layer1.linear2.weight
        device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500})
        expected = {"layer1": 0, "layer3.linear2": 0, "layer2": 1, "layer3.linear1": 1, "layer3.batchnorm": 1}
        assert device_map == expected

        # With three weights tied together
        model.layer2.linear2.weight = model.layer1.linear2.weight
        device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500})
        expected = {
            "layer1": 0,
            "layer2.linear2": 0,
            "layer3.linear2": 0,
            "layer2.linear1": 1,
            "layer2.batchnorm": 1,
            "layer3.linear1": 1,
            "layer3.batchnorm": 1,
        }
        assert device_map == expected

        # With two groups of weights tied together
        model.layer2.linear1.weight = model.layer1.linear1.weight
        device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500})
        expected = {
            "layer1": 0,
            "layer2.linear1": 0,
            "layer2.linear2": 0,
            "layer3.linear2": 0,
            "layer2.batchnorm": 1,
            "layer3.linear1": 1,
            "layer3.batchnorm": 1,
        }
        assert device_map == expected

        # With weights ties in the same module
        model = nn.Sequential(
            OrderedDict(
                [
                    ("linear1", nn.Linear(4, 4)),
                    ("linear2", nn.Linear(6, 6)),
                    ("linear3", nn.Linear(4, 4)),
                    ("linear4", nn.Linear(6, 6)),
                ]
            )
        )
        model.linear3.weight = model.linear1.weight
        model.linear3.bias = model.linear1.bias
        device_map = infer_auto_device_map(model, max_memory={0: 250, 1: 400})
        expected = {"linear1": 0, "linear2": 1, "linear3": 0, "linear4": 1}
        assert device_map == expected

        # With tied weights sharing a same prefix name (`compute.weight` vs `compute.weight_submodule.parameter`)
        class SubModule(torch.nn.Module):
            def __init__(self, ref_to_parameter):
                super().__init__()
                self.parameter = ref_to_parameter

            def forward(self, x):
                return self.x + torch.max(self.parameter)

        class LinearModuleAndSubModule(torch.nn.Linear):
            def __init__(self, in_features, out_features):
                super().__init__(in_features, out_features)
                self.weight_submodule = SubModule(self.weight)

            def forward(self, x):
                return torch.nn.functional.linear(self.weight_submodule(x), self.weight)

        class Model(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.compute = LinearModuleAndSubModule(3, 8)

            def forward(self, x):
                return self.compute(x)

        model = Model()

        device_memory = {0: 4, "cpu": 96000}  # Low memory device, just to force splitting and trigger the error
        infer_auto_device_map(model, device_memory)

    @require_huggingface_suite
    def test_infer_auto_device_map_on_t0pp(self):
        from transformers import AutoConfig, AutoModelForSeq2SeqLM

        config = AutoConfig.from_pretrained("bigscience/T0pp")
        with init_empty_weights():
            model = AutoModelForSeq2SeqLM.from_config(config)
        model.tie_weights()

        special_dtypes = {n: torch.float32 for n, _ in model.named_parameters() if "wo" in n}
        max_memory = {0: 10**10, 1: 10**10, "cpu": 10**10}
        device_map = infer_auto_device_map(
            model,
            no_split_module_classes=["T5Block"],
            dtype=torch.float16,
            max_memory=max_memory,
            special_dtypes=special_dtypes,
        )

        # The 3 tied weights should all be on device 0
        assert device_map["shared"] == 0
        assert device_map["encoder.embed_tokens"] == 0
        assert device_map["decoder.embed_tokens"] == 0

    def test_infer_auto_device_map_with_buffer_check(self):
        model = ModelForTest()
        model.linear1.register_buffer("test_buffer1", torch.zeros(10, 2))
        model.batchnorm.register_buffer("test_buffer2", torch.zeros(10, 3))
        model.linear2.register_buffer("test_buffer3", torch.zeros(10, 3))
        # model has size 236(parameters) + 360(buffers): linear1 64 + 80, batchnorm 72 + 160, linear2 100 + 120

        # Only linear1 (144) fits on device 0, and remaining buffers (batchnorm's 160 + linear2's 120 = 280) won't fit
        # device 0, because they will also be loaded to device 0 all at once when inferencing without offload_buffers
        # Should print a warning as intended in such case
        with self.assertWarns(Warning):
            device_map = infer_auto_device_map(model, max_memory={0: 400, "cpu": "1GB"})
        assert device_map == {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"}

        # Only linear1 (144) fits on device 0, and remaining buffers (batchnorm's 160 + linear2's 120 = 280) won't fit
        # device 0, but with offload_buffers they won't be loaded to device 0 all at once, so it's ok now
        # Should NOT print a warning in such case
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            device_map = infer_auto_device_map(model, max_memory={0: 400, "cpu": "1GB"}, offload_buffers=True)
        assert len(w) == 0
        assert device_map == {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"}

    def test_infer_auto_device_map_with_buffer_check_and_multi_devices(self):
        model = ModelForTest()
        model.linear1.register_buffer("test_buffer1", torch.zeros(10, 2))
        model.batchnorm.register_buffer("test_buffer2", torch.zeros(10, 3))
        model.linear2.register_buffer("test_buffer3", torch.zeros(10, 3))
        model.linear3 = nn.Linear(4, 5)
        model.linear3.register_buffer("test_buffer4", torch.zeros(10, 2))
        # model has size 336(parameters) + 440(buffers): linear1 64 + 80, batchnorm 72 + 160, linear2 100 + 120,
        # linear3 100 + 80

        # Now we have two devices, linear1 will fit on device 0, batchnorm will fit on device 1, and the second device
        # can hold all remaining buffers
        # Should NOT print a warning in such case
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 400, "cpu": "1GB"})
        assert len(w) == 0
        assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": "cpu", "linear3": "cpu"}

        # Now we have two devices, but neither the first nor the second device can hold all remaining buffers
        # Should print a warning as intended in such case
        with self.assertWarns(Warning):
            device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 200, "cpu": "1GB"})
        assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": "cpu", "linear3": "cpu"}

        # Now we have two devices, neither can hold all the buffers, but we are using the offload_buffers=True
        # Should NOT print a warning in such case
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 200, "cpu": "1GB"}, offload_buffers=True)
        assert len(w) == 0
        assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": "cpu", "linear3": "cpu"}

    def test_infer_auto_device_map_with_fallback_allocation(self):
        # Create a model where modules cannot be allocated without fallback_allocation
        # Define the inner module with its layers
        inner_module = nn.Sequential(
            OrderedDict([("linear1", nn.Linear(10, 4)), ("linear2", nn.Linear(4, 4)), ("linear3", nn.Linear(4, 8))])
        )

        # Wrap the inner module in another module
        model = nn.Sequential(OrderedDict([("module", inner_module)]))

        max_memory = {0: 256}

        # Without fallback_allocation
        with self.assertLogs() as cm:
            device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=False)
            # No module should be assigned to device 0
            assert all(device != 0 for device in device_map.values())
            # Check for warning about insufficient memory
            self.assertTrue(any("insufficient memory" in out for out in cm.output))

        # With fallback_allocation
        try:
            with self.assertLogs() as cm:
                device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
                self.assertFalse(any("insufficient memory" in out for out in cm.output))
        except AssertionError:
            # No logs exist; test passes implicitly
            pass
        # At least one submodule should be assigned to device 0
        assert any(device == 0 for device in device_map.values())

        expected_device_map = {"module.linear1": "disk", "module.linear2": 0, "module.linear3": "disk"}
        assert device_map == expected_device_map

    def test_infer_auto_device_map_with_fallback_allocation_no_fit(self):
        # Create a model where even the smallest submodules cannot fit
        inner_module = nn.Sequential(
            OrderedDict(
                [("linear1", nn.Linear(10, 10)), ("linear2", nn.Linear(10, 10)), ("linear3", nn.Linear(10, 10))]
            )
        )

        # Wrap the inner module in another module
        model = nn.Sequential(OrderedDict([("module", inner_module)]))

        max_memory = {0: 30}

        # With fallback_allocation
        try:
            with self.assertLogs() as cm:
                device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
                # No module should be assigned to device 0
                assert all(device != 0 for device in device_map.values())
                # Check for warning about insufficient memory
                self.assertTrue(any("insufficient memory" in out for out in cm.output))
        except AssertionError:
            # No logs exist; test passes implicitly
            pass

    def test_infer_auto_device_map_with_fallback_allocation_partial_fit(self):
        # Create a model with deeper hierarchy
        class CustomModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.submodule1 = nn.Linear(20, 20)
                self.submodule2 = nn.Linear(20, 20)

        model = nn.Sequential(
            OrderedDict([("module1", CustomModule()), ("module2", CustomModule()), ("module3", CustomModule())])
        )

        max_memory = {0: 5000}

        # With fallback_allocation
        device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
        # Check that at least some parameters are assigned to device 0
        assigned_to_device_0 = [name for name, device in device_map.items() if device == 0]
        assert len(assigned_to_device_0) > 0

    def test_infer_auto_device_map_with_fallback_allocation_tied_weights(self):
        # Create a model with tied weights
        class TiedWeightsModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear1 = nn.Linear(10, 10)
                self.linear2 = nn.Linear(10, 10)
                self.linear2.weight = self.linear1.weight

        model = TiedWeightsModel()

        max_memory = {0: 600}

        # With fallback_allocation
        device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
        # Check that tied modules are assigned correctly
        expected_device_map = {"": 0}
        assert device_map == expected_device_map

    def test_infer_auto_device_map_with_fallback_allocation_and_buffers(self):
        # Create a model with buffers
        model = nn.Sequential(
            OrderedDict(
                [("linear1", nn.Linear(10, 10)), ("batchnorm", nn.BatchNorm1d(10)), ("linear2", nn.Linear(10, 10))]
            )
        )
        model.linear1.register_buffer("buffer1", torch.zeros(5))
        model.batchnorm.register_buffer("buffer2", torch.zeros(5))
        model.linear2.register_buffer("buffer3", torch.zeros(5))

        max_memory = {0: 678}

        # With fallback_allocation and offload_buffers=False
        with self.assertWarns(Warning) as cm:
            device_map = infer_auto_device_map(
                model, max_memory=max_memory, fallback_allocation=True, offload_buffers=False
            )

        # Check that the warning contains the expected message
        warning_message = str(cm.warning)
        assert "offload_buffers" in warning_message or "Current model requires" in warning_message

        # Verify that the entire model is assigned to device 0
        expected_device_map = {"batchnorm": 0, "linear1": "disk", "linear2": "disk"}
        assert device_map == expected_device_map

    @require_non_cpu
    def test_get_balanced_memory(self):
        model = ModelForTest()
        # model has size 236: linear1 64, batchnorm 72, linear2 100
        max_memory = get_balanced_memory(model, max_memory={0: 200, 1: 200})
        assert {0: 200, 1: 200} == max_memory

        # We should be able to set models on a non-contiguous sub-set of
        max_memory = get_balanced_memory(model, max_memory={0: 200, 2: 200})
        assert {0: 200, 2: 200} == max_memory

        max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 300})
        assert {0: 215, 1: 300} == max_memory

        # Last device always get max memory to give more buffer and avoid accidental CPU offload
        max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 500})
        assert {0: 215, 1: 500} == max_memory

        # Last device always get max memory to give more buffer, even if CPU is provided
        max_memory = get_balanced_memory(model, max_memory={0: 300, "cpu": 1000})
        assert {0: 300, "cpu": 1000} == max_memory

        # If we set a device to 0, it's not counted.
        max_memory = get_balanced_memory(model, max_memory={0: 0, 1: 300, 2: 300})
        assert {0: 0, 1: 215, 2: 300} == max_memory

        # If we set a device to 0, it's not counted.
        max_memory = get_balanced_memory(model, max_memory={0: 0, "cpu": 100})
        assert {0: 0, "cpu": 100} == max_memory

    # Tests that get_module_size_with_ties returns the correct tied modules in
    # models with tied parameters whose parent modules share the same name prefix
    # See issue #3308: https://github.com/huggingface/accelerate/issues/3308
    def test_get_module_size_with_ties(self):
        # Create a model with a ModuleList containing more than 10 elements
        # so the names of some layers share the same prefix, e.g. "1" and "10"
        num_layers = 15
        model = nn.ModuleList([nn.Linear(10, 10) for _ in range(num_layers)])
        # Tie .weight for all the layers
        for i in range(1, num_layers):
            model[i].weight = model[i - 1].weight
        # Each tied parameter group is sorted in alphabetical ordering,
        # mimicking the output of find_tied_parameters
        tied_parameters = [sorted([f"{i}.weight" for i in range(num_layers)])]
        # Compute module sizes
        weight_size, bias_size = (
            model[0].weight.element_size() * model[0].weight.numel(),
            model[0].bias.element_size() * model[0].bias.numel(),
        )
        module_sizes = dict(
            **{"": num_layers * (weight_size + bias_size)},
            **{f"{i}": (weight_size + bias_size) for i in range(num_layers)},
            **{f"{i}.weight": weight_size for i in range(num_layers)},
            **{f"{i}.bias": bias_size for i in range(num_layers)},
        )
        # Simulate the input for get_module_size_with_ties when invoked from infer_auto_device_map
        # when the first module in model is being processed
        modules_to_treat = list(model.named_children())[1:]
        tied_params = tied_parameters[0][1:]
        module_size = weight_size + bias_size

        module_size_with_ties, tied_module_names, tied_modules = get_module_size_with_ties(
            tied_params, module_size, module_sizes, modules_to_treat
        )
        # The expected lists are ordered using as key the module names, to follow
        # the same order as the tied_parameters returned by find_tied_parameters
        expected_tied_module_names, expected_tied_modules = map(
            list, zip(*sorted(modules_to_treat, key=lambda x: x[0]))
        )

        assert module_size_with_ties == module_size + (num_layers - 1) * bias_size
        assert tied_module_names == expected_tied_module_names
        assert tied_modules == expected_tied_modules

    @require_non_cpu
    def test_load_state_dict(self):
        state_dict = {k: torch.randn(4, 5) for k in ["a", "b", "c"]}
        device_maps = [{"a": "cpu", "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": 0}]

        for device_map in device_maps:
            with tempfile.TemporaryDirectory() as tmp_dir:
                checkpoint_file = os.path.join(tmp_dir, "model.safetensors")
                save_file(state_dict, checkpoint_file, metadata={"format": "pt"})

                loaded_state_dict = load_state_dict(checkpoint_file, device_map=device_map)

            for param, device in device_map.items():
                device = device if device != "disk" else "cpu"
                assert loaded_state_dict[param].device == torch.device(device)

    def test_convert_file_size(self):
        result = convert_file_size_to_int("0MB")
        assert result == 0

        result = convert_file_size_to_int("100MB")
        assert result == (100 * (10**6))

        result = convert_file_size_to_int("2GiB")
        assert result == (2 * (2**30))

        result = convert_file_size_to_int("512KiB")
        assert result == (512 * (2**10))

        result = convert_file_size_to_int("1.5GB")
        assert result == (1.5 * (10**9))

        result = convert_file_size_to_int("100KB")
        assert result == (100 * (10**3))

        result = convert_file_size_to_int(500)
        assert result == 500

        with self.assertRaises(ValueError):
            convert_file_size_to_int("5MBB")

        with self.assertRaises(ValueError):
            convert_file_size_to_int("5k0MB")

        with self.assertRaises(ValueError):
            convert_file_size_to_int("-1GB")

    def test_get_state_dict_offloaded_model(self):
        for model_cls in (ModelForTest, NestedModelForTest):
            model = model_cls()
            execution_device = torch.device(torch_device)
            original_state_dict = model.state_dict()

            cpu_offload(model, execution_device=execution_device)
            state_dict = get_state_dict_offloaded_model(model)

            assert original_state_dict.keys() == state_dict.keys()
            for key in original_state_dict:
                assert torch.equal(original_state_dict[key], state_dict[key])

    def test_align_module_device_simple(self):
        model = ModelForTest()
        execution_device = torch.device(torch_device)
        model_device = torch.device("cpu")

        # test default execution device
        with align_module_device(model.batchnorm):
            assert model.linear1.weight.device == model_device
            assert model.batchnorm.weight.device == model_device
            assert model.linear2.weight.device == model_device
        assert model.linear1.weight.device == model_device
        assert model.batchnorm.weight.device == model_device
        assert model.linear2.weight.device == model_device

        # test with explicit execution device
        with align_module_device(model.batchnorm, execution_device=execution_device):
            assert model.linear1.weight.device == model_device
            assert model.batchnorm.weight.device == execution_device
            assert model.linear2.weight.device == model_device
        assert model.linear1.weight.device == model_device
        assert model.batchnorm.weight.device == model_device
        assert model.linear2.weight.device == model_device

    def test_align_module_device_offloaded(self):
        model = ModelForTest()
        execution_device = torch.device(torch_device)
        offload_device = torch.device("meta")
        cpu_offload(model, execution_device=execution_device)

        # test default execution device
        with align_module_device(model.batchnorm):
            assert model.linear1.weight.device == offload_device
            assert model.batchnorm.weight.device == execution_device
            assert model.linear2.weight.device == offload_device
        assert model.linear1.weight.device == offload_device
        assert model.batchnorm.weight.device == offload_device
        assert model.linear2.weight.device == offload_device

        # test with explicit execution device
        with align_module_device(model.batchnorm, execution_device="cpu"):
            assert model.linear1.weight.device == offload_device
            assert model.batchnorm.weight.device == torch.device("cpu")
            assert model.linear2.weight.device == offload_device
        assert model.linear1.weight.device == offload_device
        assert model.batchnorm.weight.device == offload_device
        assert model.linear2.weight.device == offload_device

    def test_align_module_device_offloaded_nested(self):
        model = NestedModelForTest()
        execution_device = torch.device(torch_device)
        align_device = torch.device("cpu")
        cpu_offload(model, execution_device=execution_device)
        for module in model.modules():
            with align_module_device(module, align_device):
                for param in model.parameters(recurse=False):
                    assert param.device == align_device