1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import tempfile
import unittest
import warnings
from collections import OrderedDict
from typing import Optional
import torch
import torch.nn as nn
from parameterized import parameterized
from safetensors.torch import save_file
from accelerate import init_empty_weights
from accelerate.big_modeling import cpu_offload
from accelerate.test_utils import (
require_huggingface_suite,
require_multi_device,
require_non_cpu,
require_non_hpu,
torch_device,
)
from accelerate.utils.modeling import (
align_module_device,
check_device_map,
clean_device_map,
compute_module_sizes,
compute_module_total_buffer_size,
convert_file_size_to_int,
find_tied_parameters,
get_balanced_memory,
get_module_size_with_ties,
get_state_dict_offloaded_model,
infer_auto_device_map,
load_checkpoint_in_model,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
)
torch_device = f"{torch_device}:0" if torch_device != "cpu" else "cpu"
class ModelForTest(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(3, 4)
self.batchnorm = nn.BatchNorm1d(4)
self.linear2 = nn.Linear(4, 5)
def forward(self, x):
return self.linear2(self.batchnorm(self.linear1(x)))
class NestedModelForTest(nn.Module):
def __init__(self):
super().__init__()
self.model = ModelForTest()
def forward(self, x):
return self.model(x)
class LinearWithNonPersistentBuffers(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.register_buffer("bias", torch.empty(out_features, **factory_kwargs), persistent=False)
else:
self.register_buffer("bias", None)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.linear(input, self.weight, self.bias)
class ModelSeveralDtypes(nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("int_param", torch.randint(high=10, size=(15, 30)))
self.register_parameter("float_param", torch.nn.Parameter(torch.rand(10, 5)))
def forward(self, x):
return x + 2
def sequential_model(num_layers):
layers = OrderedDict([(f"linear{i}", nn.Linear(1000, 1000)) for i in range(1, num_layers + 1)])
return nn.Sequential(layers)
class ModelingUtilsTester(unittest.TestCase):
def check_set_module_tensor_for_device(self, model, device1, device2):
assert model.linear1.weight.device == torch.device(device1)
with self.subTest("Access by submodule and direct name for a parameter"):
set_module_tensor_to_device(model.linear1, "weight", device2)
assert model.linear1.weight.device == torch.device(device2)
if torch.device(device2) == torch.device("meta"):
with self.assertRaises(ValueError):
# We need a `value` to set the weight back on device1
set_module_tensor_to_device(model.linear1, "weight", device1)
set_module_tensor_to_device(model.linear1, "weight", device1, value=torch.randn(4, 3))
else:
set_module_tensor_to_device(model.linear1, "weight", device1)
assert model.linear1.weight.device == torch.device(device1)
with self.subTest("Access by module and full name for a parameter"):
set_module_tensor_to_device(model, "linear1.weight", device2)
assert model.linear1.weight.device == torch.device(device2)
if torch.device(device2) == torch.device("meta"):
with self.assertRaises(ValueError):
# We need a `value` to set the weight back on device1
set_module_tensor_to_device(model, "linear1.weight", device1)
set_module_tensor_to_device(model, "linear1.weight", device1, value=torch.randn(4, 3))
else:
set_module_tensor_to_device(model, "linear1.weight", device1)
assert model.linear1.weight.device == torch.device(device1)
assert model.batchnorm.running_mean.device == torch.device(device1)
with self.subTest("Access by submodule and direct name for a buffer"):
set_module_tensor_to_device(model.batchnorm, "running_mean", device2)
assert model.batchnorm.running_mean.device == torch.device(device2)
if torch.device(device2) == torch.device("meta"):
with self.assertRaises(ValueError):
# We need a `value` to set the weight back on device1
set_module_tensor_to_device(model.batchnorm, "running_mean", device1)
set_module_tensor_to_device(model.batchnorm, "running_mean", device1, value=torch.randn(4))
else:
set_module_tensor_to_device(model.batchnorm, "running_mean", device1)
assert model.batchnorm.running_mean.device == torch.device(device1)
with self.subTest("Access by module and full name for a parameter"):
set_module_tensor_to_device(model, "batchnorm.running_mean", device2)
assert model.batchnorm.running_mean.device == torch.device(device2)
if torch.device(device2) == torch.device("meta"):
with self.assertRaises(ValueError):
# We need a `value` to set the weight back on CPU
set_module_tensor_to_device(model, "batchnorm.running_mean", device1)
set_module_tensor_to_device(model, "batchnorm.running_mean", device1, value=torch.randn(4))
else:
set_module_tensor_to_device(model, "batchnorm.running_mean", device1)
assert model.batchnorm.running_mean.device == torch.device(device1)
def test_set_module_tensor_to_meta_and_cpu(self):
model = ModelForTest()
self.check_set_module_tensor_for_device(model, "cpu", "meta")
@require_non_cpu
def test_set_module_tensor_to_cpu_and_gpu(self):
model = ModelForTest()
self.check_set_module_tensor_for_device(model, "cpu", torch_device)
@require_non_cpu
def test_set_module_tensor_to_meta_and_gpu(self):
model = ModelForTest().to(torch_device)
self.check_set_module_tensor_for_device(model, torch_device, "meta")
@require_non_hpu # hpu does not support device indexing "hpu:1"
@require_multi_device
def test_set_module_tensor_between_gpus(self):
model = ModelForTest().to(torch_device)
self.check_set_module_tensor_for_device(model, torch_device, torch_device.replace("0", "1"))
def test_set_module_tensor_sets_dtype(self):
model = ModelForTest()
set_module_tensor_to_device(model, "linear1.weight", "cpu", value=model.linear1.weight, dtype=torch.float16)
assert model.linear1.weight.dtype == torch.float16
def test_set_module_tensor_checks_shape(self):
model = ModelForTest()
tensor = torch.zeros((2, 2))
with self.assertRaises(ValueError) as cm:
set_module_tensor_to_device(model, "linear1.weight", "cpu", value=tensor)
assert (
str(cm.exception)
== 'Trying to set a tensor of shape torch.Size([2, 2]) in "weight" (which has shape torch.Size([4, 3])), this looks incorrect.'
)
def test_named_tensors(self):
model = nn.BatchNorm1d(4)
named_tensors = named_module_tensors(model)
assert [name for name, _ in named_tensors] == [
"weight",
"bias",
"running_mean",
"running_var",
"num_batches_tracked",
]
named_tensors = named_module_tensors(model, include_buffers=False)
assert [name for name, _ in named_tensors] == ["weight", "bias"]
model = ModelForTest()
named_tensors = named_module_tensors(model)
assert [name for name, _ in named_tensors] == []
named_tensors = named_module_tensors(model, recurse=True)
assert [name for name, _ in named_tensors] == [
"linear1.weight",
"linear1.bias",
"batchnorm.weight",
"batchnorm.bias",
"linear2.weight",
"linear2.bias",
"batchnorm.running_mean",
"batchnorm.running_var",
"batchnorm.num_batches_tracked",
]
named_tensors = named_module_tensors(model, include_buffers=False, recurse=True)
assert [name for name, _ in named_tensors] == [
"linear1.weight",
"linear1.bias",
"batchnorm.weight",
"batchnorm.bias",
"linear2.weight",
"linear2.bias",
]
model = LinearWithNonPersistentBuffers(10, 10)
named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=False)
assert [name for name, _ in named_tensors] == ["weight", "bias"]
named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=True)
assert [name for name, _ in named_tensors] == ["weight"]
def test_find_tied_parameters(self):
model = sequential_model(4)
assert find_tied_parameters(model) == []
model.linear2.weight = model.linear1.weight
assert find_tied_parameters(model) == [["linear1.weight", "linear2.weight"]]
model.linear4.weight = model.linear1.weight
assert find_tied_parameters(model) == [["linear1.weight", "linear2.weight", "linear4.weight"]]
model = sequential_model(5)
model.linear1.weight = model.linear4.weight
model.linear2.weight = model.linear3.weight
model.linear5.weight = model.linear2.weight
tied_params = sorted(find_tied_parameters(model), key=lambda x: len(x))
assert tied_params == [
["linear1.weight", "linear4.weight"],
["linear2.weight", "linear3.weight", "linear5.weight"],
]
model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))]))
model.block1.linear1.weight = model.block2.linear1.weight
assert find_tied_parameters(model) == [["block1.linear1.weight", "block2.linear1.weight"]]
layer = nn.Linear(10, 10)
model = nn.Sequential(layer, layer)
tied_params = find_tied_parameters(model)
assert sorted(tied_params) == [["0.bias", "1.bias"], ["0.weight", "1.weight"]]
def test_retie_parameters(self):
model = sequential_model(2)
retie_parameters(model, [["linear1.weight", "linear2.weight"]])
assert model.linear1.weight is model.linear2.weight
model = sequential_model(3)
retie_parameters(model, [["linear1.weight", "linear2.weight", "linear3.weight"]])
assert model.linear1.weight is model.linear2.weight
assert model.linear1.weight is model.linear3.weight
model = sequential_model(5)
retie_parameters(
model, [["linear1.weight", "linear4.weight"], ["linear2.weight", "linear3.weight", "linear5.weight"]]
)
assert model.linear1.weight is model.linear4.weight
assert model.linear2.weight is model.linear3.weight
assert model.linear2.weight is model.linear5.weight
model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))]))
retie_parameters(model, [["block1.linear1.weight", "block2.linear1.weight"]])
assert model.block1.linear1.weight is model.block2.linear1.weight
def test_compute_module_sizes(self):
model = ModelForTest()
expected_sizes = {"": 236, "linear1": 64, "linear1.weight": 48, "linear1.bias": 16}
expected_sizes.update({"linear2": 100, "linear2.weight": 80, "linear2.bias": 20})
expected_sizes.update({"batchnorm": 72, "batchnorm.weight": 16, "batchnorm.bias": 16})
expected_sizes.update(
{"batchnorm.running_mean": 16, "batchnorm.running_var": 16, "batchnorm.num_batches_tracked": 8}
)
module_sizes = compute_module_sizes(model)
assert module_sizes == expected_sizes
model.half()
expected_sizes = {k: s // 2 for k, s in expected_sizes.items()}
# This one is not converted to half.
expected_sizes["batchnorm.num_batches_tracked"] = 8
# This impacts batchnorm and total
expected_sizes["batchnorm"] += 4
expected_sizes[""] += 4
module_sizes = compute_module_sizes(model)
assert module_sizes == expected_sizes
def test_compute_module_total_buffer_size(self):
model = ModelForTest()
model.linear1.register_buffer("test_buffer", torch.zeros(10, 10))
model.register_buffer("test_buffer2", torch.zeros(20, 10))
buffer_size = compute_module_total_buffer_size(model)
assert buffer_size == 1240
model.half()
buffer_size = compute_module_total_buffer_size(model)
assert buffer_size == 624
def test_check_device_map(self):
model = ModelForTest()
check_device_map(model, {"": 0})
with self.assertRaises(ValueError):
check_device_map(model, {"linear1": 0, "linear2": 1})
check_device_map(model, {"linear1": 0, "linear2": 1, "batchnorm": 1})
def test_check_device_map_invalid_keys(self):
model = ModelForTest()
device_map = {
"linear1": "cpu", # Valid module
"batchnorm": "cpu", # Valid module
"linear2": "cpu", # Valid module
"invalid_module": 0, # Invalid - should trigger warning
"another_invalid": 1, # Invalid - should trigger warning
}
# Test for the warning about invalid keys
with self.assertWarns(UserWarning) as cm:
check_device_map(model, device_map)
warning_msg = str(cm.warning)
self.assertIn("device_map keys do not match any submodules", warning_msg)
self.assertIn("invalid_module", warning_msg)
self.assertIn("another_invalid", warning_msg)
def shard_test_model(self, model, tmp_dir):
module_index = {
"linear1": "checkpoint_part1.bin",
"batchnorm": "checkpoint_part2.bin",
"linear2": "checkpoint_part3.bin",
}
index = {}
for name, _ in model.state_dict().items():
module = name.split(".")[0]
index[name] = module_index[module]
with open(os.path.join(tmp_dir, "weight_map.index.json"), "w") as f:
json.dump(index, f)
for module, fname in module_index.items():
state_dict = {k: v for k, v in model.state_dict().items() if k.startswith(module)}
full_fname = os.path.join(tmp_dir, fname)
torch.save(state_dict, full_fname)
def test_load_checkpoint_in_model(self):
# Check with whole checkpoint
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
fname = os.path.join(tmp_dir, "pt_model.bin")
torch.save(model.state_dict(), fname)
load_checkpoint_in_model(model, fname)
# Check with sharded index
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
self.shard_test_model(model, tmp_dir)
index_file = os.path.join(tmp_dir, "weight_map.index.json")
load_checkpoint_in_model(model, index_file)
# Check with sharded checkpoint
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
self.shard_test_model(model, tmp_dir)
load_checkpoint_in_model(model, tmp_dir)
@require_non_cpu
def test_load_checkpoint_in_model_one_gpu(self):
device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"}
# Check with whole checkpoint
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
fname = os.path.join(tmp_dir, "pt_model.bin")
torch.save(model.state_dict(), fname)
load_checkpoint_in_model(model, fname, device_map=device_map)
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# Check with sharded index
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
self.shard_test_model(model, tmp_dir)
index_file = os.path.join(tmp_dir, "weight_map.index.json")
load_checkpoint_in_model(model, index_file, device_map=device_map)
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# Check with sharded checkpoint folder
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
self.shard_test_model(model, tmp_dir)
load_checkpoint_in_model(model, tmp_dir, device_map=device_map)
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
@require_non_cpu
def test_load_checkpoint_in_model_disk_offload(self):
device_map = {"linear1": "cpu", "batchnorm": "disk", "linear2": "cpu"}
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
fname = os.path.join(tmp_dir, "pt_model.bin")
torch.save(model.state_dict(), fname)
load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("meta")
# Buffers are not offloaded by default
assert model.batchnorm.running_mean.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
fname = os.path.join(tmp_dir, "pt_model.bin")
torch.save(model.state_dict(), fname)
load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir, offload_buffers=True)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.batchnorm.running_mean.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("cpu")
@require_non_hpu # hpu does not support device indexing "hpu:1"
@require_multi_device
def test_load_checkpoint_in_model_two_gpu(self):
device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1}
# Check with whole checkpoint
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
fname = os.path.join(tmp_dir, "pt_model.bin")
torch.save(model.state_dict(), fname)
load_checkpoint_in_model(model, fname, device_map=device_map)
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device(torch_device.replace("0", "1"))
# Check with sharded index
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
self.shard_test_model(model, tmp_dir)
index_file = os.path.join(tmp_dir, "weight_map.index.json")
load_checkpoint_in_model(model, index_file, device_map=device_map)
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device(torch_device.replace("0", "1"))
# Check with sharded checkpoint
model = ModelForTest()
with tempfile.TemporaryDirectory() as tmp_dir:
self.shard_test_model(model, tmp_dir)
load_checkpoint_in_model(model, tmp_dir, device_map=device_map)
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device(torch_device.replace("0", "1"))
def test_load_checkpoint_in_model_dtype(self):
with tempfile.NamedTemporaryFile(suffix=".pt") as tmpfile:
model = ModelSeveralDtypes()
torch.save(model.state_dict(), tmpfile.name)
new_model = ModelSeveralDtypes()
load_checkpoint_in_model(
new_model, tmpfile.name, offload_state_dict=True, dtype=torch.float16, device_map={"": "cpu"}
)
assert new_model.int_param.dtype == torch.int64
assert new_model.float_param.dtype == torch.float16
@parameterized.expand([(None,), ({"": "cpu"},)])
def test_load_checkpoint_in_model_unexpected_keys(self, device_map: Optional[dict]):
model = ModelForTest()
state_dict = model.state_dict()
state_dict["foo"] = torch.rand(4, 5)
with tempfile.NamedTemporaryFile(suffix=".pt") as tmpfile:
torch.save(state_dict, tmpfile)
model = ModelForTest()
with self.assertLogs() as cm:
load_checkpoint_in_model(model, tmpfile.name, device_map=device_map)
self.assertTrue(any("were not used when" in out for out in cm.output))
with self.assertRaises((ValueError, RuntimeError)):
load_checkpoint_in_model(model, tmpfile.name, device_map=device_map, strict=True)
def test_clean_device_map(self):
# Regroup everything if all is on the same device
assert clean_device_map({"a": 0, "b": 0, "c": 0}) == {"": 0}
# Regroups children of level 1 on the same device
assert clean_device_map({"a.x": 0, "a.y": 0, "b.x": 1, "b.y": 1, "c": 1}) == {"a": 0, "b": 1, "c": 1}
# Regroups children of level 2 on the same device
assert clean_device_map({"a.x": 0, "a.y": 0, "b.x.0": 1, "b.x.1": 1, "b.y.0": 2, "b.y.1": 2, "c": 2}) == {
"a": 0,
"b.x": 1,
"b.y": 2,
"c": 2,
}
def test_infer_auto_device_map(self):
model = ModelForTest()
# model has size 236: linear1 64, batchnorm 72, linear2 100
try:
with self.assertLogs() as cm:
device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200})
self.assertFalse(any("insufficient memory" in out for out in cm.output))
except AssertionError:
# No logs exist; test passes implicitly
pass
# only linear1 fits on device 0 as we keep memory available for the maximum layer in case of offload
assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": 1}
device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 172, 2: 200})
# On device 1, we don't care about keeping size available for the max layer, so even if there is just the
# size available for batchnorm + linear2, they fit here.
assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": 1}
model.linear1.weight = model.linear2.weight
device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200})
# By tying weights, the whole model fits on device 0
assert device_map == {"": 0}
# When splitting a bigger model, the split is done at the layer level
model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest())
device_map = infer_auto_device_map(model, max_memory={0: 500, 1: 500})
assert device_map == {"0": 0, "1.linear1": 0, "1.batchnorm": 0, "1.linear2": 1, "2": 1}
# With no_split_module_classes, it's done at that module level
model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest())
device_map = infer_auto_device_map(
model, max_memory={0: 500, 1: 500}, no_split_module_classes=["ModelForTest"]
)
assert device_map == {"0": 0, "1": 1, "2": 1}
def test_infer_auto_device_map_with_tied_weights(self):
model = nn.Sequential(
OrderedDict([("layer1", ModelForTest()), ("layer2", ModelForTest()), ("layer3", ModelForTest())])
)
model.layer3.linear2.weight = model.layer1.linear2.weight
device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500})
expected = {"layer1": 0, "layer3.linear2": 0, "layer2": 1, "layer3.linear1": 1, "layer3.batchnorm": 1}
assert device_map == expected
# With three weights tied together
model.layer2.linear2.weight = model.layer1.linear2.weight
device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500})
expected = {
"layer1": 0,
"layer2.linear2": 0,
"layer3.linear2": 0,
"layer2.linear1": 1,
"layer2.batchnorm": 1,
"layer3.linear1": 1,
"layer3.batchnorm": 1,
}
assert device_map == expected
# With two groups of weights tied together
model.layer2.linear1.weight = model.layer1.linear1.weight
device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500})
expected = {
"layer1": 0,
"layer2.linear1": 0,
"layer2.linear2": 0,
"layer3.linear2": 0,
"layer2.batchnorm": 1,
"layer3.linear1": 1,
"layer3.batchnorm": 1,
}
assert device_map == expected
# With weights ties in the same module
model = nn.Sequential(
OrderedDict(
[
("linear1", nn.Linear(4, 4)),
("linear2", nn.Linear(6, 6)),
("linear3", nn.Linear(4, 4)),
("linear4", nn.Linear(6, 6)),
]
)
)
model.linear3.weight = model.linear1.weight
model.linear3.bias = model.linear1.bias
device_map = infer_auto_device_map(model, max_memory={0: 250, 1: 400})
expected = {"linear1": 0, "linear2": 1, "linear3": 0, "linear4": 1}
assert device_map == expected
# With tied weights sharing a same prefix name (`compute.weight` vs `compute.weight_submodule.parameter`)
class SubModule(torch.nn.Module):
def __init__(self, ref_to_parameter):
super().__init__()
self.parameter = ref_to_parameter
def forward(self, x):
return self.x + torch.max(self.parameter)
class LinearModuleAndSubModule(torch.nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features)
self.weight_submodule = SubModule(self.weight)
def forward(self, x):
return torch.nn.functional.linear(self.weight_submodule(x), self.weight)
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.compute = LinearModuleAndSubModule(3, 8)
def forward(self, x):
return self.compute(x)
model = Model()
device_memory = {0: 4, "cpu": 96000} # Low memory device, just to force splitting and trigger the error
infer_auto_device_map(model, device_memory)
@require_huggingface_suite
def test_infer_auto_device_map_on_t0pp(self):
from transformers import AutoConfig, AutoModelForSeq2SeqLM
config = AutoConfig.from_pretrained("bigscience/T0pp")
with init_empty_weights():
model = AutoModelForSeq2SeqLM.from_config(config)
model.tie_weights()
special_dtypes = {n: torch.float32 for n, _ in model.named_parameters() if "wo" in n}
max_memory = {0: 10**10, 1: 10**10, "cpu": 10**10}
device_map = infer_auto_device_map(
model,
no_split_module_classes=["T5Block"],
dtype=torch.float16,
max_memory=max_memory,
special_dtypes=special_dtypes,
)
# The 3 tied weights should all be on device 0
assert device_map["shared"] == 0
assert device_map["encoder.embed_tokens"] == 0
assert device_map["decoder.embed_tokens"] == 0
def test_infer_auto_device_map_with_buffer_check(self):
model = ModelForTest()
model.linear1.register_buffer("test_buffer1", torch.zeros(10, 2))
model.batchnorm.register_buffer("test_buffer2", torch.zeros(10, 3))
model.linear2.register_buffer("test_buffer3", torch.zeros(10, 3))
# model has size 236(parameters) + 360(buffers): linear1 64 + 80, batchnorm 72 + 160, linear2 100 + 120
# Only linear1 (144) fits on device 0, and remaining buffers (batchnorm's 160 + linear2's 120 = 280) won't fit
# device 0, because they will also be loaded to device 0 all at once when inferencing without offload_buffers
# Should print a warning as intended in such case
with self.assertWarns(Warning):
device_map = infer_auto_device_map(model, max_memory={0: 400, "cpu": "1GB"})
assert device_map == {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"}
# Only linear1 (144) fits on device 0, and remaining buffers (batchnorm's 160 + linear2's 120 = 280) won't fit
# device 0, but with offload_buffers they won't be loaded to device 0 all at once, so it's ok now
# Should NOT print a warning in such case
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
device_map = infer_auto_device_map(model, max_memory={0: 400, "cpu": "1GB"}, offload_buffers=True)
assert len(w) == 0
assert device_map == {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"}
def test_infer_auto_device_map_with_buffer_check_and_multi_devices(self):
model = ModelForTest()
model.linear1.register_buffer("test_buffer1", torch.zeros(10, 2))
model.batchnorm.register_buffer("test_buffer2", torch.zeros(10, 3))
model.linear2.register_buffer("test_buffer3", torch.zeros(10, 3))
model.linear3 = nn.Linear(4, 5)
model.linear3.register_buffer("test_buffer4", torch.zeros(10, 2))
# model has size 336(parameters) + 440(buffers): linear1 64 + 80, batchnorm 72 + 160, linear2 100 + 120,
# linear3 100 + 80
# Now we have two devices, linear1 will fit on device 0, batchnorm will fit on device 1, and the second device
# can hold all remaining buffers
# Should NOT print a warning in such case
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 400, "cpu": "1GB"})
assert len(w) == 0
assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": "cpu", "linear3": "cpu"}
# Now we have two devices, but neither the first nor the second device can hold all remaining buffers
# Should print a warning as intended in such case
with self.assertWarns(Warning):
device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 200, "cpu": "1GB"})
assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": "cpu", "linear3": "cpu"}
# Now we have two devices, neither can hold all the buffers, but we are using the offload_buffers=True
# Should NOT print a warning in such case
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 200, "cpu": "1GB"}, offload_buffers=True)
assert len(w) == 0
assert device_map == {"linear1": 0, "batchnorm": 1, "linear2": "cpu", "linear3": "cpu"}
def test_infer_auto_device_map_with_fallback_allocation(self):
# Create a model where modules cannot be allocated without fallback_allocation
# Define the inner module with its layers
inner_module = nn.Sequential(
OrderedDict([("linear1", nn.Linear(10, 4)), ("linear2", nn.Linear(4, 4)), ("linear3", nn.Linear(4, 8))])
)
# Wrap the inner module in another module
model = nn.Sequential(OrderedDict([("module", inner_module)]))
max_memory = {0: 256}
# Without fallback_allocation
with self.assertLogs() as cm:
device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=False)
# No module should be assigned to device 0
assert all(device != 0 for device in device_map.values())
# Check for warning about insufficient memory
self.assertTrue(any("insufficient memory" in out for out in cm.output))
# With fallback_allocation
try:
with self.assertLogs() as cm:
device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
self.assertFalse(any("insufficient memory" in out for out in cm.output))
except AssertionError:
# No logs exist; test passes implicitly
pass
# At least one submodule should be assigned to device 0
assert any(device == 0 for device in device_map.values())
expected_device_map = {"module.linear1": "disk", "module.linear2": 0, "module.linear3": "disk"}
assert device_map == expected_device_map
def test_infer_auto_device_map_with_fallback_allocation_no_fit(self):
# Create a model where even the smallest submodules cannot fit
inner_module = nn.Sequential(
OrderedDict(
[("linear1", nn.Linear(10, 10)), ("linear2", nn.Linear(10, 10)), ("linear3", nn.Linear(10, 10))]
)
)
# Wrap the inner module in another module
model = nn.Sequential(OrderedDict([("module", inner_module)]))
max_memory = {0: 30}
# With fallback_allocation
try:
with self.assertLogs() as cm:
device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
# No module should be assigned to device 0
assert all(device != 0 for device in device_map.values())
# Check for warning about insufficient memory
self.assertTrue(any("insufficient memory" in out for out in cm.output))
except AssertionError:
# No logs exist; test passes implicitly
pass
def test_infer_auto_device_map_with_fallback_allocation_partial_fit(self):
# Create a model with deeper hierarchy
class CustomModule(nn.Module):
def __init__(self):
super().__init__()
self.submodule1 = nn.Linear(20, 20)
self.submodule2 = nn.Linear(20, 20)
model = nn.Sequential(
OrderedDict([("module1", CustomModule()), ("module2", CustomModule()), ("module3", CustomModule())])
)
max_memory = {0: 5000}
# With fallback_allocation
device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
# Check that at least some parameters are assigned to device 0
assigned_to_device_0 = [name for name, device in device_map.items() if device == 0]
assert len(assigned_to_device_0) > 0
def test_infer_auto_device_map_with_fallback_allocation_tied_weights(self):
# Create a model with tied weights
class TiedWeightsModel(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(10, 10)
self.linear2 = nn.Linear(10, 10)
self.linear2.weight = self.linear1.weight
model = TiedWeightsModel()
max_memory = {0: 600}
# With fallback_allocation
device_map = infer_auto_device_map(model, max_memory=max_memory, fallback_allocation=True)
# Check that tied modules are assigned correctly
expected_device_map = {"": 0}
assert device_map == expected_device_map
def test_infer_auto_device_map_with_fallback_allocation_and_buffers(self):
# Create a model with buffers
model = nn.Sequential(
OrderedDict(
[("linear1", nn.Linear(10, 10)), ("batchnorm", nn.BatchNorm1d(10)), ("linear2", nn.Linear(10, 10))]
)
)
model.linear1.register_buffer("buffer1", torch.zeros(5))
model.batchnorm.register_buffer("buffer2", torch.zeros(5))
model.linear2.register_buffer("buffer3", torch.zeros(5))
max_memory = {0: 678}
# With fallback_allocation and offload_buffers=False
with self.assertWarns(Warning) as cm:
device_map = infer_auto_device_map(
model, max_memory=max_memory, fallback_allocation=True, offload_buffers=False
)
# Check that the warning contains the expected message
warning_message = str(cm.warning)
assert "offload_buffers" in warning_message or "Current model requires" in warning_message
# Verify that the entire model is assigned to device 0
expected_device_map = {"batchnorm": 0, "linear1": "disk", "linear2": "disk"}
assert device_map == expected_device_map
@require_non_cpu
def test_get_balanced_memory(self):
model = ModelForTest()
# model has size 236: linear1 64, batchnorm 72, linear2 100
max_memory = get_balanced_memory(model, max_memory={0: 200, 1: 200})
assert {0: 200, 1: 200} == max_memory
# We should be able to set models on a non-contiguous sub-set of
max_memory = get_balanced_memory(model, max_memory={0: 200, 2: 200})
assert {0: 200, 2: 200} == max_memory
max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 300})
assert {0: 215, 1: 300} == max_memory
# Last device always get max memory to give more buffer and avoid accidental CPU offload
max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 500})
assert {0: 215, 1: 500} == max_memory
# Last device always get max memory to give more buffer, even if CPU is provided
max_memory = get_balanced_memory(model, max_memory={0: 300, "cpu": 1000})
assert {0: 300, "cpu": 1000} == max_memory
# If we set a device to 0, it's not counted.
max_memory = get_balanced_memory(model, max_memory={0: 0, 1: 300, 2: 300})
assert {0: 0, 1: 215, 2: 300} == max_memory
# If we set a device to 0, it's not counted.
max_memory = get_balanced_memory(model, max_memory={0: 0, "cpu": 100})
assert {0: 0, "cpu": 100} == max_memory
# Tests that get_module_size_with_ties returns the correct tied modules in
# models with tied parameters whose parent modules share the same name prefix
# See issue #3308: https://github.com/huggingface/accelerate/issues/3308
def test_get_module_size_with_ties(self):
# Create a model with a ModuleList containing more than 10 elements
# so the names of some layers share the same prefix, e.g. "1" and "10"
num_layers = 15
model = nn.ModuleList([nn.Linear(10, 10) for _ in range(num_layers)])
# Tie .weight for all the layers
for i in range(1, num_layers):
model[i].weight = model[i - 1].weight
# Each tied parameter group is sorted in alphabetical ordering,
# mimicking the output of find_tied_parameters
tied_parameters = [sorted([f"{i}.weight" for i in range(num_layers)])]
# Compute module sizes
weight_size, bias_size = (
model[0].weight.element_size() * model[0].weight.numel(),
model[0].bias.element_size() * model[0].bias.numel(),
)
module_sizes = dict(
**{"": num_layers * (weight_size + bias_size)},
**{f"{i}": (weight_size + bias_size) for i in range(num_layers)},
**{f"{i}.weight": weight_size for i in range(num_layers)},
**{f"{i}.bias": bias_size for i in range(num_layers)},
)
# Simulate the input for get_module_size_with_ties when invoked from infer_auto_device_map
# when the first module in model is being processed
modules_to_treat = list(model.named_children())[1:]
tied_params = tied_parameters[0][1:]
module_size = weight_size + bias_size
module_size_with_ties, tied_module_names, tied_modules = get_module_size_with_ties(
tied_params, module_size, module_sizes, modules_to_treat
)
# The expected lists are ordered using as key the module names, to follow
# the same order as the tied_parameters returned by find_tied_parameters
expected_tied_module_names, expected_tied_modules = map(
list, zip(*sorted(modules_to_treat, key=lambda x: x[0]))
)
assert module_size_with_ties == module_size + (num_layers - 1) * bias_size
assert tied_module_names == expected_tied_module_names
assert tied_modules == expected_tied_modules
@require_non_cpu
def test_load_state_dict(self):
state_dict = {k: torch.randn(4, 5) for k in ["a", "b", "c"]}
device_maps = [{"a": "cpu", "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": 0}]
for device_map in device_maps:
with tempfile.TemporaryDirectory() as tmp_dir:
checkpoint_file = os.path.join(tmp_dir, "model.safetensors")
save_file(state_dict, checkpoint_file, metadata={"format": "pt"})
loaded_state_dict = load_state_dict(checkpoint_file, device_map=device_map)
for param, device in device_map.items():
device = device if device != "disk" else "cpu"
assert loaded_state_dict[param].device == torch.device(device)
def test_convert_file_size(self):
result = convert_file_size_to_int("0MB")
assert result == 0
result = convert_file_size_to_int("100MB")
assert result == (100 * (10**6))
result = convert_file_size_to_int("2GiB")
assert result == (2 * (2**30))
result = convert_file_size_to_int("512KiB")
assert result == (512 * (2**10))
result = convert_file_size_to_int("1.5GB")
assert result == (1.5 * (10**9))
result = convert_file_size_to_int("100KB")
assert result == (100 * (10**3))
result = convert_file_size_to_int(500)
assert result == 500
with self.assertRaises(ValueError):
convert_file_size_to_int("5MBB")
with self.assertRaises(ValueError):
convert_file_size_to_int("5k0MB")
with self.assertRaises(ValueError):
convert_file_size_to_int("-1GB")
def test_get_state_dict_offloaded_model(self):
for model_cls in (ModelForTest, NestedModelForTest):
model = model_cls()
execution_device = torch.device(torch_device)
original_state_dict = model.state_dict()
cpu_offload(model, execution_device=execution_device)
state_dict = get_state_dict_offloaded_model(model)
assert original_state_dict.keys() == state_dict.keys()
for key in original_state_dict:
assert torch.equal(original_state_dict[key], state_dict[key])
def test_align_module_device_simple(self):
model = ModelForTest()
execution_device = torch.device(torch_device)
model_device = torch.device("cpu")
# test default execution device
with align_module_device(model.batchnorm):
assert model.linear1.weight.device == model_device
assert model.batchnorm.weight.device == model_device
assert model.linear2.weight.device == model_device
assert model.linear1.weight.device == model_device
assert model.batchnorm.weight.device == model_device
assert model.linear2.weight.device == model_device
# test with explicit execution device
with align_module_device(model.batchnorm, execution_device=execution_device):
assert model.linear1.weight.device == model_device
assert model.batchnorm.weight.device == execution_device
assert model.linear2.weight.device == model_device
assert model.linear1.weight.device == model_device
assert model.batchnorm.weight.device == model_device
assert model.linear2.weight.device == model_device
def test_align_module_device_offloaded(self):
model = ModelForTest()
execution_device = torch.device(torch_device)
offload_device = torch.device("meta")
cpu_offload(model, execution_device=execution_device)
# test default execution device
with align_module_device(model.batchnorm):
assert model.linear1.weight.device == offload_device
assert model.batchnorm.weight.device == execution_device
assert model.linear2.weight.device == offload_device
assert model.linear1.weight.device == offload_device
assert model.batchnorm.weight.device == offload_device
assert model.linear2.weight.device == offload_device
# test with explicit execution device
with align_module_device(model.batchnorm, execution_device="cpu"):
assert model.linear1.weight.device == offload_device
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == offload_device
assert model.linear1.weight.device == offload_device
assert model.batchnorm.weight.device == offload_device
assert model.linear2.weight.device == offload_device
def test_align_module_device_offloaded_nested(self):
model = NestedModelForTest()
execution_device = torch.device(torch_device)
align_device = torch.device("cpu")
cpu_offload(model, execution_device=execution_device)
for module in model.modules():
with align_module_device(module, align_device):
for param in model.parameters(recurse=False):
assert param.device == align_device
|