File: test_multidevice.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (174 lines) | stat: -rw-r--r-- 6,788 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import unittest
from unittest import skip

import torch

from accelerate import Accelerator
from accelerate.big_modeling import dispatch_model
from accelerate.test_utils import (
    DEFAULT_LAUNCH_COMMAND,
    assert_exception,
    device_count,
    execute_subprocess_async,
    get_launch_command,
    path_in_accelerate_package,
    require_huggingface_suite,
    require_multi_device,
    require_non_torch_xla,
    require_pippy,
    require_torchvision,
    run_first,
    torch_device,
)
from accelerate.utils import is_hpu_available, patch_environment


class MultiDeviceTester(unittest.TestCase):
    test_file_path = path_in_accelerate_package("test_utils", "scripts", "test_script.py")
    data_loop_file_path = path_in_accelerate_package("test_utils", "scripts", "test_distributed_data_loop.py")
    operation_file_path = path_in_accelerate_package("test_utils", "scripts", "test_ops.py")
    pippy_file_path = path_in_accelerate_package("test_utils", "scripts", "external_deps", "test_pippy.py")
    merge_weights_file_path = path_in_accelerate_package("test_utils", "scripts", "test_merge_weights.py")

    @run_first
    @require_multi_device
    def test_multi_device(self):
        print(f"Found {device_count} {torch_device} devices.")
        cmd = DEFAULT_LAUNCH_COMMAND + [self.test_file_path]
        with patch_environment(omp_num_threads=1):
            execute_subprocess_async(cmd)

    @run_first
    @require_multi_device
    def test_multi_device_ops(self):
        print(f"Found {device_count} {torch_device} devices.")
        cmd = DEFAULT_LAUNCH_COMMAND + [self.operation_file_path]
        with patch_environment(omp_num_threads=1):
            execute_subprocess_async(cmd)

    @run_first
    @require_multi_device
    def test_pad_across_processes(self):
        print(f"Found {device_count} {torch_device} devices.")
        cmd = DEFAULT_LAUNCH_COMMAND + [inspect.getfile(self.__class__)]
        with patch_environment(omp_num_threads=1):
            execute_subprocess_async(cmd)

    @run_first
    @require_multi_device
    def test_multi_device_merge_fsdp_weights(self):
        print(f"Found {device_count} {torch_device} devices.")
        cmd = DEFAULT_LAUNCH_COMMAND + [self.merge_weights_file_path]

        env_kwargs = dict(omp_num_threads=1)
        with patch_environment(**env_kwargs):
            execute_subprocess_async(cmd)

    @run_first
    @require_non_torch_xla
    @require_multi_device
    def test_distributed_data_loop(self):
        """
        This TestCase checks the behaviour that occurs during distributed training or evaluation,
        when the batch size does not evenly divide the dataset size.
        """
        print(f"Found {device_count} devices, using 2 devices only")
        cmd = get_launch_command(num_processes=2) + [self.data_loop_file_path]

        env_kwargs = dict(omp_num_threads=1)
        if torch_device == "xpu":
            env_kwargs.update(ze_affinity_mask="0,1")
        elif torch_device == "npu":
            env_kwargs.update(ascend_rt_visible_devices="0,1")
        elif torch_device == "mlu":
            env_kwargs.update(mlu_visible_devices="0,1")
        elif torch_device == "sdaa":
            env_kwargs.update(sdaa_visible_devices="0,1")
        else:
            env_kwargs.update(cuda_visible_devices="0,1")

        with patch_environment(**env_kwargs):
            execute_subprocess_async(cmd)

    @run_first
    @require_pippy
    @require_torchvision
    @require_multi_device
    @require_huggingface_suite
    @skip("Will soon deprecate pippy")
    def test_pippy(self):
        """
        Checks the integration with the pippy framework
        """
        print(f"Found {device_count} {torch_device} devices")
        cmd = get_launch_command(multi_gpu=True, num_processes=device_count) + [self.pippy_file_path]
        with patch_environment(omp_num_threads=1):
            execute_subprocess_async(cmd)


if __name__ == "__main__":
    accelerator = Accelerator()
    shape = (accelerator.state.process_index + 2, 10)
    tensor = torch.randint(0, 10, shape).to(accelerator.device)

    error_msg = ""

    tensor1 = accelerator.pad_across_processes(tensor)
    if tensor1.shape[0] != accelerator.state.num_processes + 1:
        error_msg += f"Found shape {tensor1.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
    index = accelerator.state.process_index + 2
    if not torch.equal(tensor1[:index], tensor):
        error_msg += "Tensors have different values."
    if not torch.all(tensor1[index:] == 0):
        error_msg += "Padding was not done with the right value (0)."

    tensor2 = accelerator.pad_across_processes(tensor.clone(), pad_first=True)
    if tensor2.shape[0] != accelerator.state.num_processes + 1:
        error_msg += f"Found shape {tensor2.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
    index = accelerator.state.num_processes - accelerator.state.process_index - 1
    if not torch.equal(tensor2[index:], tensor):
        error_msg += "Tensors have different values."
    if not torch.all(tensor2[:index] == 0):
        error_msg += "Padding was not done with the right value (0)."

    # Raise error at the end to make sure we don't stop at the first failure.
    if len(error_msg) > 0:
        raise ValueError(error_msg)

    # Check device_map
    accelerator.print("Test `device_map` cannot be prepared.")

    class ModelForTest(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.linear1 = torch.nn.Linear(3, 4)
            self.batchnorm = torch.nn.BatchNorm1d(4)
            self.linear2 = torch.nn.Linear(4, 5)

        def forward(self, x):
            return self.linear2(self.batchnorm(self.linear1(x)))

    if is_hpu_available():
        device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 0}
    else:
        device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1}

    model = ModelForTest()
    dispatch_model(model, device_map=device_map)
    with assert_exception(ValueError, "You can't train a model that has been loaded with"):
        model = accelerator.prepare_model(model)