1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
import torch
from accelerate import Accelerator
from accelerate.test_utils import require_cpu, require_fp16, require_non_cpu
from accelerate.test_utils.testing import AccelerateTestCase
@require_cpu
class CPUOptimizerTester(AccelerateTestCase):
def test_accelerated_optimizer_pickling(self):
model = torch.nn.Linear(10, 10)
optimizer = torch.optim.SGD(model.parameters(), 0.1)
accelerator = Accelerator()
optimizer = accelerator.prepare(optimizer)
try:
pickle.loads(pickle.dumps(optimizer))
except Exception as e:
self.fail(f"Accelerated optimizer pickling failed with {e}")
@require_fp16
@require_non_cpu
class OptimizerTester(AccelerateTestCase):
def test_accelerated_optimizer_step_was_skipped(self):
model = torch.nn.Linear(5, 5)
optimizer = torch.optim.SGD(model.parameters(), 0.1)
accelerator = Accelerator(mixed_precision="fp16")
model, optimizer = accelerator.prepare(model, optimizer)
loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
accelerator.backward(loss)
for p in model.parameters():
# Fake the gradients, as if there's no overflow
p.grad.fill_(0.01)
optimizer.step()
assert optimizer.step_was_skipped is False
loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
accelerator.backward(loss)
for p in model.parameters():
p.grad.fill_(0.01)
# Manually set the gradients to be NaN, as if there's an overflow
p.grad[0] = torch.tensor(float("nan"))
optimizer.step()
assert optimizer.step_was_skipped is True
loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
accelerator.backward(loss)
for p in model.parameters():
p.grad.fill_(0.01)
# Manually set the gradients to be NaN, as if there's an overflow
p.grad[0] = torch.tensor(float("nan"))
optimizer.step()
assert optimizer.step_was_skipped is True
loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
accelerator.backward(loss)
for p in model.parameters():
# Fake the gradients, as if there's no overflow
p.grad.fill_(0.01)
optimizer.step()
assert optimizer.step_was_skipped is False
|