File: test_optimizer.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (82 lines) | stat: -rw-r--r-- 3,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pickle

import torch

from accelerate import Accelerator
from accelerate.test_utils import require_cpu, require_fp16, require_non_cpu
from accelerate.test_utils.testing import AccelerateTestCase


@require_cpu
class CPUOptimizerTester(AccelerateTestCase):
    def test_accelerated_optimizer_pickling(self):
        model = torch.nn.Linear(10, 10)
        optimizer = torch.optim.SGD(model.parameters(), 0.1)
        accelerator = Accelerator()
        optimizer = accelerator.prepare(optimizer)
        try:
            pickle.loads(pickle.dumps(optimizer))
        except Exception as e:
            self.fail(f"Accelerated optimizer pickling failed with {e}")


@require_fp16
@require_non_cpu
class OptimizerTester(AccelerateTestCase):
    def test_accelerated_optimizer_step_was_skipped(self):
        model = torch.nn.Linear(5, 5)
        optimizer = torch.optim.SGD(model.parameters(), 0.1)
        accelerator = Accelerator(mixed_precision="fp16")
        model, optimizer = accelerator.prepare(model, optimizer)

        loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
        accelerator.backward(loss)
        for p in model.parameters():
            # Fake the gradients, as if there's no overflow
            p.grad.fill_(0.01)

        optimizer.step()
        assert optimizer.step_was_skipped is False

        loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
        accelerator.backward(loss)
        for p in model.parameters():
            p.grad.fill_(0.01)
        # Manually set the gradients to be NaN, as if there's an overflow
        p.grad[0] = torch.tensor(float("nan"))

        optimizer.step()
        assert optimizer.step_was_skipped is True

        loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
        accelerator.backward(loss)
        for p in model.parameters():
            p.grad.fill_(0.01)
        # Manually set the gradients to be NaN, as if there's an overflow
        p.grad[0] = torch.tensor(float("nan"))

        optimizer.step()
        assert optimizer.step_was_skipped is True

        loss = model(torch.randn(2, 5, device=accelerator.device)).sum()
        accelerator.backward(loss)
        for p in model.parameters():
            # Fake the gradients, as if there's no overflow
            p.grad.fill_(0.01)

        optimizer.step()
        assert optimizer.step_was_skipped is False