1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import logging
import os
import random
import shutil
import tempfile
import uuid
from contextlib import contextmanager
import pytest
import torch
from parameterized import parameterized_class
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import (
DEFAULT_LAUNCH_COMMAND,
execute_subprocess_async,
require_non_cpu,
require_non_torch_xla,
run_first,
)
from accelerate.test_utils.testing import AccelerateTestCase
from accelerate.utils import DistributedType, ProjectConfiguration, patch_environment, set_seed
logger = logging.getLogger(__name__)
def dummy_dataloaders(a=2, b=3, batch_size=16, n_train_batches: int = 10, n_valid_batches: int = 2):
"Generates a tuple of dummy DataLoaders to test with"
def get_dataset(n_batches):
x = torch.randn(batch_size * n_batches, 1)
return TensorDataset(x, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1))
train_dataset = get_dataset(n_train_batches)
valid_dataset = get_dataset(n_valid_batches)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4)
valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=batch_size, num_workers=4)
return (train_dataloader, valid_dataloader)
def train(num_epochs, model, dataloader, optimizer, accelerator, scheduler=None):
"Trains for `num_epochs`"
rands = []
for epoch in range(num_epochs):
# Train quickly
model.train()
for batch in dataloader:
x, y = batch
outputs = model(x)
loss = torch.nn.functional.mse_loss(outputs, y)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
rands.append(random.random()) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class DummyModel(nn.Module):
"Simple model to do y=mx+b"
def __init__(self):
super().__init__()
self.a = nn.Parameter(torch.randn(1))
self.b = nn.Parameter(torch.randn(1))
def forward(self, x):
return x * self.a + self.b
def parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = "use_safetensors" if param["use_safetensors"] is True else "use_pytorch"
return f"{func.__name__}_{param_based_name}"
@parameterized_class(("use_safetensors",), [[True], [False]], class_name_func=parameterized_custom_name_func)
class CheckpointTest(AccelerateTestCase):
def check_adam_state(self, state1, state2, distributed_type):
# For DistributedType.XLA, the `accelerator.save_state` function calls `xm._maybe_convert_to_cpu` before saving.
# As a result, all tuple values are converted to lists. Therefore, we need to convert them back here.
# Remove this code once Torch XLA fixes this issue.
if distributed_type == DistributedType.XLA:
state1["param_groups"][0]["betas"] = tuple(state1["param_groups"][0]["betas"])
state2["param_groups"][0]["betas"] = tuple(state2["param_groups"][0]["betas"])
assert state1 == state2
def test_with_save_limit(self):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(total_limit=1, project_dir=tmpdir, automatic_checkpoint_naming=True)
# Train baseline
accelerator = Accelerator(project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
# Save second state
accelerator.save_state(safe_serialization=self.use_safetensors)
assert len(os.listdir(accelerator.project_dir)) == 1
def test_can_resume_training_with_folder(self):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
# Train baseline
accelerator = Accelerator()
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
initial = os.path.join(tmpdir, "initial")
accelerator.save_state(initial, safe_serialization=self.use_safetensors)
(a, b) = model.a.item(), model.b.item()
opt_state = optimizer.state_dict()
ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
(a1, b1) = model.a.item(), model.b.item()
opt_state1 = optimizer.state_dict()
# Train partially
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
accelerator = Accelerator()
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
accelerator.load_state(initial)
(a2, b2) = model.a.item(), model.b.item()
opt_state2 = optimizer.state_dict()
self.assertEqual(a, a2)
self.assertEqual(b, b2)
assert a == a2
assert b == b2
self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type)
test_rands = train(2, model, train_dataloader, optimizer, accelerator)
# Save everything
checkpoint = os.path.join(tmpdir, "checkpoint")
accelerator.save_state(checkpoint, safe_serialization=self.use_safetensors)
# Load everything back in and make sure all states work
accelerator.load_state(checkpoint)
test_rands += train(1, model, train_dataloader, optimizer, accelerator)
(a3, b3) = model.a.item(), model.b.item()
opt_state3 = optimizer.state_dict()
assert a1 == a3
assert b1 == b3
self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type)
assert ground_truth_rands == test_rands
def test_can_resume_training(self):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
(a, b) = model.a.item(), model.b.item()
opt_state = optimizer.state_dict()
ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
(a1, b1) = model.a.item(), model.b.item()
opt_state1 = optimizer.state_dict()
# Train partially
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True)
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))
(a2, b2) = model.a.item(), model.b.item()
opt_state2 = optimizer.state_dict()
assert a == a2
assert b == b2
self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type)
test_rands = train(2, model, train_dataloader, optimizer, accelerator)
# Save everything
accelerator.save_state(safe_serialization=self.use_safetensors)
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1"))
test_rands += train(1, model, train_dataloader, optimizer, accelerator)
(a3, b3) = model.a.item(), model.b.item()
opt_state3 = optimizer.state_dict()
assert a1 == a3
assert b1 == b3
self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type)
assert ground_truth_rands == test_rands
def test_can_resume_training_checkpoints_relative_path(self):
# See #1983
# This test is like test_can_resume_training but uses a relative path for the checkpoint and automatically
# infers the checkpoint path when loading.
@contextmanager
def temporary_relative_directory():
# This is equivalent to tempfile.TemporaryDirectory() except that it returns a relative path
rand_dir = f"test_path_{uuid.uuid4()}"
os.mkdir(rand_dir)
try:
yield rand_dir
finally:
shutil.rmtree(rand_dir)
with temporary_relative_directory() as tmpdir:
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
(a, b) = model.a.item(), model.b.item()
opt_state = optimizer.state_dict()
ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
(a1, b1) = model.a.item(), model.b.item()
opt_state1 = optimizer.state_dict()
# Train partially
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True)
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader
)
accelerator.load_state() # <= infer the directory automatically
(a2, b2) = model.a.item(), model.b.item()
opt_state2 = optimizer.state_dict()
assert a == a2
assert b == b2
self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type)
assert opt_state == opt_state2
test_rands = train(2, model, train_dataloader, optimizer, accelerator)
# Save everything
accelerator.save_state(safe_serialization=self.use_safetensors)
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1"))
test_rands += train(1, model, train_dataloader, optimizer, accelerator)
(a3, b3) = model.a.item(), model.b.item()
opt_state3 = optimizer.state_dict()
assert a1 == a3
assert b1 == b3
self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type)
assert ground_truth_rands == test_rands
def test_invalid_registration(self):
t = torch.tensor([1, 2, 3])
t1 = torch.tensor([2, 3, 4])
net = DummyModel()
opt = torch.optim.Adam(net.parameters())
accelerator = Accelerator()
with self.assertRaises(ValueError) as ve:
accelerator.register_for_checkpointing(t, t1, net, opt)
message = str(ve.exception)
assert "Item at index 0" in message
assert "Item at index 1" in message
assert "Item at index 2" not in message
assert "Item at index 3" not in message
def test_with_scheduler(self):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
scheduler_state = scheduler.state_dict()
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
assert scheduler_state != scheduler.state_dict()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))
assert scheduler_state == scheduler.state_dict()
def test_automatic_loading(self):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42)
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
train(2, model, train_dataloader, optimizer, accelerator, scheduler)
(a2, b2) = model.a.item(), model.b.item()
# Save a first time
accelerator.save_state(safe_serialization=self.use_safetensors)
train(1, model, train_dataloader, optimizer, accelerator, scheduler)
(a3, b3) = model.a.item(), model.b.item()
# Load back in the last saved checkpoint, should point to a2, b2
accelerator.load_state()
assert a3 != model.a.item()
assert b3 != model.b.item()
assert a2 == model.a.item()
assert b2 == model.b.item()
def test_checkpoint_deletion(self):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42)
model = DummyModel()
project_config = ProjectConfiguration(automatic_checkpoint_naming=True, total_limit=2)
# Train baseline
accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
model = accelerator.prepare(model)
# Save 3 states:
for _ in range(11):
accelerator.save_state(safe_serialization=self.use_safetensors)
assert not os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))
assert os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_9"))
assert os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_10"))
@run_first
@require_non_cpu
@require_non_torch_xla
def test_map_location(self):
cmd = DEFAULT_LAUNCH_COMMAND + [inspect.getfile(self.__class__)]
env_kwargs = dict(use_safe_tensors=str(self.use_safetensors), omp_num_threads="1")
with patch_environment(**env_kwargs):
execute_subprocess_async(cmd)
if __name__ == "__main__":
use_safetensors = os.environ.get("USE_SAFETENSORS", "False") == "True"
savedir = "/tmp/accelerate/state_checkpointing"
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
train_dataloader, valid_dataloader = dummy_dataloaders()
project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
accelerator = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
model, optimizer = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the initial optimizer is loaded on the GPU
for group in optimizer.param_groups:
param_device = group["params"][0].device
break
assert param_device.type == accelerator.device.type
model = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state(safe_serialization=use_safetensors)
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
param_device = group["params"][0].device
break
assert param_device.type == torch.device("cpu").type, (
f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
)
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
param_device = group["params"][0].device
break
assert param_device.type == accelerator.device.type, (
f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
)
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
|