File: test_state_checkpointing.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (444 lines) | stat: -rw-r--r-- 20,770 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import logging
import os
import random
import shutil
import tempfile
import uuid
from contextlib import contextmanager

import pytest
import torch
from parameterized import parameterized_class
from torch import nn
from torch.utils.data import DataLoader, TensorDataset

from accelerate import Accelerator
from accelerate.test_utils import (
    DEFAULT_LAUNCH_COMMAND,
    execute_subprocess_async,
    require_non_cpu,
    require_non_torch_xla,
    run_first,
)
from accelerate.test_utils.testing import AccelerateTestCase
from accelerate.utils import DistributedType, ProjectConfiguration, patch_environment, set_seed


logger = logging.getLogger(__name__)


def dummy_dataloaders(a=2, b=3, batch_size=16, n_train_batches: int = 10, n_valid_batches: int = 2):
    "Generates a tuple of dummy DataLoaders to test with"

    def get_dataset(n_batches):
        x = torch.randn(batch_size * n_batches, 1)
        return TensorDataset(x, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1))

    train_dataset = get_dataset(n_train_batches)
    valid_dataset = get_dataset(n_valid_batches)
    train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4)
    valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=batch_size, num_workers=4)
    return (train_dataloader, valid_dataloader)


def train(num_epochs, model, dataloader, optimizer, accelerator, scheduler=None):
    "Trains for `num_epochs`"
    rands = []
    for epoch in range(num_epochs):
        # Train quickly
        model.train()
        for batch in dataloader:
            x, y = batch
            outputs = model(x)
            loss = torch.nn.functional.mse_loss(outputs, y)
            accelerator.backward(loss)
            optimizer.step()
            optimizer.zero_grad()
        rands.append(random.random())  # Introduce some randomness
        if scheduler is not None:
            scheduler.step()
    return rands


class DummyModel(nn.Module):
    "Simple model to do y=mx+b"

    def __init__(self):
        super().__init__()
        self.a = nn.Parameter(torch.randn(1))
        self.b = nn.Parameter(torch.randn(1))

    def forward(self, x):
        return x * self.a + self.b


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = "use_safetensors" if param["use_safetensors"] is True else "use_pytorch"
    return f"{func.__name__}_{param_based_name}"


@parameterized_class(("use_safetensors",), [[True], [False]], class_name_func=parameterized_custom_name_func)
class CheckpointTest(AccelerateTestCase):
    def check_adam_state(self, state1, state2, distributed_type):
        # For DistributedType.XLA, the `accelerator.save_state` function calls `xm._maybe_convert_to_cpu` before saving.
        # As a result, all tuple values are converted to lists. Therefore, we need to convert them back here.
        # Remove this code once Torch XLA fixes this issue.
        if distributed_type == DistributedType.XLA:
            state1["param_groups"][0]["betas"] = tuple(state1["param_groups"][0]["betas"])
            state2["param_groups"][0]["betas"] = tuple(state2["param_groups"][0]["betas"])
        assert state1 == state2

    def test_with_save_limit(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(total_limit=1, project_dir=tmpdir, automatic_checkpoint_naming=True)
            # Train baseline
            accelerator = Accelerator(project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            # Save initial
            accelerator.save_state(safe_serialization=self.use_safetensors)

            # Save second state
            accelerator.save_state(safe_serialization=self.use_safetensors)
            assert len(os.listdir(accelerator.project_dir)) == 1

    def test_can_resume_training_with_folder(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            # Train baseline
            accelerator = Accelerator()
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            # Save initial
            initial = os.path.join(tmpdir, "initial")
            accelerator.save_state(initial, safe_serialization=self.use_safetensors)
            (a, b) = model.a.item(), model.b.item()
            opt_state = optimizer.state_dict()
            ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
            (a1, b1) = model.a.item(), model.b.item()
            opt_state1 = optimizer.state_dict()

            # Train partially
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            accelerator = Accelerator()
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            accelerator.load_state(initial)
            (a2, b2) = model.a.item(), model.b.item()
            opt_state2 = optimizer.state_dict()
            self.assertEqual(a, a2)
            self.assertEqual(b, b2)
            assert a == a2
            assert b == b2
            self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type)

            test_rands = train(2, model, train_dataloader, optimizer, accelerator)
            # Save everything
            checkpoint = os.path.join(tmpdir, "checkpoint")
            accelerator.save_state(checkpoint, safe_serialization=self.use_safetensors)

            # Load everything back in and make sure all states work
            accelerator.load_state(checkpoint)
            test_rands += train(1, model, train_dataloader, optimizer, accelerator)
            (a3, b3) = model.a.item(), model.b.item()
            opt_state3 = optimizer.state_dict()
            assert a1 == a3
            assert b1 == b3
            self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type)
            assert ground_truth_rands == test_rands

    def test_can_resume_training(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(automatic_checkpoint_naming=True)

            # Train baseline
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            # Save initial
            accelerator.save_state(safe_serialization=self.use_safetensors)
            (a, b) = model.a.item(), model.b.item()
            opt_state = optimizer.state_dict()
            ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
            (a1, b1) = model.a.item(), model.b.item()
            opt_state1 = optimizer.state_dict()

            # Train partially
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True)
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))
            (a2, b2) = model.a.item(), model.b.item()
            opt_state2 = optimizer.state_dict()
            assert a == a2
            assert b == b2
            self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type)

            test_rands = train(2, model, train_dataloader, optimizer, accelerator)
            # Save everything
            accelerator.save_state(safe_serialization=self.use_safetensors)

            # Load everything back in and make sure all states work
            accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1"))
            test_rands += train(1, model, train_dataloader, optimizer, accelerator)
            (a3, b3) = model.a.item(), model.b.item()
            opt_state3 = optimizer.state_dict()
            assert a1 == a3
            assert b1 == b3
            self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type)
            assert ground_truth_rands == test_rands

    def test_can_resume_training_checkpoints_relative_path(self):
        # See #1983
        # This test is like test_can_resume_training but uses a relative path for the checkpoint and automatically
        # infers the checkpoint path when loading.
        @contextmanager
        def temporary_relative_directory():
            # This is equivalent to tempfile.TemporaryDirectory() except that it returns a relative path
            rand_dir = f"test_path_{uuid.uuid4()}"
            os.mkdir(rand_dir)
            try:
                yield rand_dir
            finally:
                shutil.rmtree(rand_dir)

        with temporary_relative_directory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(automatic_checkpoint_naming=True)

            # Train baseline
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            # Save initial
            accelerator.save_state(safe_serialization=self.use_safetensors)
            (a, b) = model.a.item(), model.b.item()
            opt_state = optimizer.state_dict()
            ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
            (a1, b1) = model.a.item(), model.b.item()
            opt_state1 = optimizer.state_dict()

            # Train partially
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True)
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader
            )
            accelerator.load_state()  # <= infer the directory automatically
            (a2, b2) = model.a.item(), model.b.item()
            opt_state2 = optimizer.state_dict()
            assert a == a2
            assert b == b2
            self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type)
            assert opt_state == opt_state2

            test_rands = train(2, model, train_dataloader, optimizer, accelerator)
            # Save everything
            accelerator.save_state(safe_serialization=self.use_safetensors)

            # Load everything back in and make sure all states work
            accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1"))
            test_rands += train(1, model, train_dataloader, optimizer, accelerator)
            (a3, b3) = model.a.item(), model.b.item()
            opt_state3 = optimizer.state_dict()
            assert a1 == a3
            assert b1 == b3
            self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type)
            assert ground_truth_rands == test_rands

    def test_invalid_registration(self):
        t = torch.tensor([1, 2, 3])
        t1 = torch.tensor([2, 3, 4])
        net = DummyModel()
        opt = torch.optim.Adam(net.parameters())
        accelerator = Accelerator()
        with self.assertRaises(ValueError) as ve:
            accelerator.register_for_checkpointing(t, t1, net, opt)
        message = str(ve.exception)
        assert "Item at index 0" in message
        assert "Item at index 1" in message
        assert "Item at index 2" not in message
        assert "Item at index 3" not in message

    def test_with_scheduler(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
            # Train baseline
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader, scheduler
            )
            # Save initial
            accelerator.save_state(safe_serialization=self.use_safetensors)
            scheduler_state = scheduler.state_dict()
            train(3, model, train_dataloader, optimizer, accelerator, scheduler)
            assert scheduler_state != scheduler.state_dict()

            # Load everything back in and make sure all states work
            accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))
            assert scheduler_state == scheduler.state_dict()

    def test_automatic_loading(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
            scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
            train_dataloader, valid_dataloader = dummy_dataloaders()
            project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
            # Train baseline
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(
                model, optimizer, train_dataloader, valid_dataloader, scheduler
            )
            # Save initial
            accelerator.save_state(safe_serialization=self.use_safetensors)
            train(2, model, train_dataloader, optimizer, accelerator, scheduler)
            (a2, b2) = model.a.item(), model.b.item()
            # Save a first time
            accelerator.save_state(safe_serialization=self.use_safetensors)
            train(1, model, train_dataloader, optimizer, accelerator, scheduler)
            (a3, b3) = model.a.item(), model.b.item()

            # Load back in the last saved checkpoint, should point to a2, b2
            accelerator.load_state()
            assert a3 != model.a.item()
            assert b3 != model.b.item()
            assert a2 == model.a.item()
            assert b2 == model.b.item()

    def test_checkpoint_deletion(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            set_seed(42)
            model = DummyModel()
            project_config = ProjectConfiguration(automatic_checkpoint_naming=True, total_limit=2)
            # Train baseline
            accelerator = Accelerator(project_dir=tmpdir, project_config=project_config)
            model = accelerator.prepare(model)
            # Save 3 states:
            for _ in range(11):
                accelerator.save_state(safe_serialization=self.use_safetensors)
            assert not os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))
            assert os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_9"))
            assert os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_10"))

    @run_first
    @require_non_cpu
    @require_non_torch_xla
    def test_map_location(self):
        cmd = DEFAULT_LAUNCH_COMMAND + [inspect.getfile(self.__class__)]

        env_kwargs = dict(use_safe_tensors=str(self.use_safetensors), omp_num_threads="1")
        with patch_environment(**env_kwargs):
            execute_subprocess_async(cmd)


if __name__ == "__main__":
    use_safetensors = os.environ.get("USE_SAFETENSORS", "False") == "True"
    savedir = "/tmp/accelerate/state_checkpointing"
    model = DummyModel()
    optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
    train_dataloader, valid_dataloader = dummy_dataloaders()
    project_config = ProjectConfiguration(automatic_checkpoint_naming=True)
    # Train baseline
    accelerator = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
    if accelerator.process_index == 0:
        if os.path.exists(savedir):
            shutil.rmtree(savedir)
        os.makedirs(savedir)
    model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, valid_dataloader, scheduler
    )
    model, optimizer = accelerator.prepare(model, optimizer)
    train(3, model, train_dataloader, optimizer, accelerator, scheduler)
    # Check that the initial optimizer is loaded on the GPU
    for group in optimizer.param_groups:
        param_device = group["params"][0].device
        break
    assert param_device.type == accelerator.device.type
    model = model.cpu()
    accelerator.wait_for_everyone()
    accelerator.save_state(safe_serialization=use_safetensors)
    accelerator.wait_for_everyone()

    # Check CPU state
    accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
    for group in optimizer.param_groups:
        param_device = group["params"][0].device
        break
    assert param_device.type == torch.device("cpu").type, (
        f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
    )

    # Check device state
    model.to(accelerator.device)
    accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
    for group in optimizer.param_groups:
        param_device = group["params"][0].device
        break
    assert param_device.type == accelerator.device.type, (
        f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
    )

    # Check error
    with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
        accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
    accelerator.wait_for_everyone()
    if accelerator.process_index == 0:
        shutil.rmtree(savedir)
    accelerator.wait_for_everyone()