1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import logging
import os
import random
import re
import subprocess
import tempfile
import unittest
import zipfile
from pathlib import Path
from typing import Optional
from unittest import mock
import numpy as np
import torch
from packaging import version
# We use TF to parse the logs
from accelerate import Accelerator
from accelerate.state import PartialState
from accelerate.test_utils.testing import (
MockingTestCase,
TempDirTestCase,
require_aim,
require_clearml,
require_comet_ml,
require_dvclive,
require_matplotlib,
require_mlflow,
require_pandas,
require_swanlab,
require_tensorboard,
require_trackio,
require_wandb,
skip,
)
from accelerate.tracking import (
AimTracker,
ClearMLTracker,
CometMLTracker,
DVCLiveTracker,
GeneralTracker,
MLflowTracker,
SwanLabTracker,
TensorBoardTracker,
TrackioTracker,
WandBTracker,
)
from accelerate.utils import (
ProjectConfiguration,
is_comet_ml_available,
is_dvclive_available,
is_tensorboard_available,
)
if is_comet_ml_available():
from comet_ml import ExperimentConfig
if is_tensorboard_available():
import struct
import tensorboard.compat.proto.event_pb2 as event_pb2
if is_dvclive_available():
from dvclive.plots.metric import Metric
from dvclive.serialize import load_yaml
from dvclive.utils import parse_metrics
logger = logging.getLogger(__name__)
@require_tensorboard
class TensorBoardTrackingTest(unittest.TestCase):
@unittest.skipIf(version.parse(np.__version__) >= version.parse("2.0"), "TB doesn't support numpy 2.0")
def test_init_trackers(self):
project_name = "test_project_with_config"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath)
config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"}
accelerator.init_trackers(project_name, config)
accelerator.end_training()
for child in Path(f"{dirpath}/{project_name}").glob("*/**"):
log = list(filter(lambda x: x.is_file(), child.iterdir()))[0]
assert str(log) != ""
def test_log(self):
project_name = "test_project_with_log"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath)
accelerator.init_trackers(project_name)
values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"}
accelerator.log(values, step=0)
accelerator.end_training()
# Logged values are stored in the outermost-tfevents file and can be read in as a TFRecord
# Names are randomly generated each time
log = list(filter(lambda x: x.is_file(), Path(f"{dirpath}/{project_name}").iterdir()))[0]
assert str(log) != ""
def test_log_with_tensor(self):
project_name = "test_project_with_log"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath)
accelerator.init_trackers(project_name)
values = {"tensor": torch.tensor(1)}
accelerator.log(values, step=0)
accelerator.end_training()
# Logged values are stored in the outermost-tfevents file and can be read in as a TFRecord
# Names are randomly generated each time
log = list(filter(lambda x: x.is_file(), Path(f"{dirpath}/{project_name}").iterdir()))[0]
# Reading implementation based on https://github.com/pytorch/pytorch/issues/45327#issuecomment-703757685
with open(log, "rb") as f:
data = f.read()
found_tensor = False
while data:
header = struct.unpack("Q", data[:8])
event_str = data[12 : 12 + int(header[0])] # 8+4
data = data[12 + int(header[0]) + 4 :]
event = event_pb2.Event()
event.ParseFromString(event_str)
if event.HasField("summary"):
for value in event.summary.value:
if value.simple_value == 1.0 and value.tag == "tensor":
found_tensor = True
assert found_tensor, "Converted tensor was not found in the log file!"
def test_project_dir(self):
with self.assertRaisesRegex(ValueError, "Logging with `tensorboard` requires a `logging_dir`"):
_ = Accelerator(log_with="tensorboard")
with tempfile.TemporaryDirectory() as dirpath:
_ = Accelerator(log_with="tensorboard", project_dir=dirpath)
def test_project_dir_with_config(self):
config = ProjectConfiguration(total_limit=30)
with tempfile.TemporaryDirectory() as dirpath:
_ = Accelerator(log_with="tensorboard", project_dir=dirpath, project_config=config)
@require_wandb
@mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
class WandBTrackingTest(TempDirTestCase, MockingTestCase):
def setUp(self):
super().setUp()
# wandb let's us override where logs are stored to via the WANDB_DIR env var
self.add_mocks(mock.patch.dict(os.environ, {"WANDB_DIR": self.tmpdir}))
@staticmethod
def parse_log(log: str, section: str, record: bool = True):
"""
Parses wandb log for `section` and returns a dictionary of
all items in that section. Section names are based on the
output of `wandb sync --view --verbose` and items starting
with "Record" in that result
"""
# Big thanks to the W&B team for helping us parse their logs
pattern = rf"{section} ([\S\s]*?)\n\n"
if record:
pattern = rf"Record: {pattern}"
cleaned_record = re.findall(pattern, log)[0]
# A config
if section == "config" or section == "history":
cleaned_record = re.findall(r'"([a-zA-Z0-9_.,]+)', cleaned_record)
return {key: val for key, val in zip(cleaned_record[0::2], cleaned_record[1::2])}
# Everything else
else:
return dict(re.findall(r'(\w+): "([^\s]+)"', cleaned_record))
@skip
def test_wandb(self):
project_name = "test_project_with_config"
accelerator = Accelerator(log_with="wandb")
config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"}
kwargs = {"wandb": {"tags": ["my_tag"]}}
accelerator.init_trackers(project_name, config, kwargs)
values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"}
accelerator.log(values, step=0)
accelerator.end_training()
# The latest offline log is stored at wandb/latest-run/*.wandb
for child in Path(f"{self.tmpdir}/wandb/latest-run").glob("*"):
if child.is_file() and child.suffix == ".wandb":
cmd = ["wandb", "sync", "--view", "--verbose", str(child)]
content = subprocess.check_output(cmd, encoding="utf8", errors="ignore")
break
# Check HPS through careful parsing and cleaning
logged_items = self.parse_log(content, "config")
assert logged_items["num_iterations"] == "12"
assert logged_items["learning_rate"] == "0.01"
assert logged_items["some_boolean"] == "false"
assert logged_items["some_string"] == "some_value"
assert logged_items["some_string"] == "some_value"
# Run tags
logged_items = self.parse_log(content, "run", False)
assert logged_items["tags"] == "my_tag"
# Actual logging
logged_items = self.parse_log(content, "history")
assert logged_items["total_loss"] == "0.1"
assert logged_items["iteration"] == "1"
assert logged_items["my_text"] == "some_value"
assert logged_items["_step"] == "0"
@require_mlflow
class MLflowTrackingTest(unittest.TestCase):
def setUp(self):
import mlflow
self.tmpdir = tempfile.TemporaryDirectory()
mlflow.set_tracking_uri("file://" + self.tmpdir.name)
@require_matplotlib
def create_mock_figure(self):
"""Create a mock figure for testing."""
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(6, 4))
return fig
def test_log(self):
import mlflow
"""Test that log calls mlflow.log_metrics with only numeric values and the correct step."""
values = {"accuracy": 0.95, "loss": 0.1, "non_numeric": "ignored"}
tracker = MLflowTracker(experiment_name="test_exp", logging_dir=self.tmpdir.name)
accelerator = Accelerator(log_with=tracker)
accelerator.init_trackers(project_name="test_exp")
tracker.log(values, step=10)
run_id = tracker.active_run.info.run_id
accelerator.end_training()
# Retrieve the run and check the logged metrics.
run = mlflow.get_run(run_id)
metrics = run.data.metrics
self.assertEqual(metrics.get("accuracy"), 0.95)
self.assertEqual(metrics.get("loss"), 0.1)
self.assertNotIn("non_numeric", metrics)
@require_matplotlib
def test_log_figure(self):
import mlflow
"""Test that log_figure calls mlflow.log_figure with the correct arguments."""
dummy_figure = self.create_mock_figure()
tracker = MLflowTracker(experiment_name="test_exp", logging_dir=self.tmpdir.name)
accelerator = Accelerator(log_with=tracker)
accelerator.init_trackers(project_name="test_exp")
tracker.log_figure(dummy_figure, artifact_file="dummy_figure.png")
run_id = tracker.active_run.info.run_id
accelerator.end_training()
self.assertIn(
"dummy_figure.png",
[artifact.path for artifact in mlflow.artifacts.list_artifacts(run_id=run_id)],
)
def test_log_artifact(self):
import mlflow
"""Test that log_artifact calls mlflow.log_artifact with the correct file path."""
dummy_file_path = os.path.join(self.tmpdir.name, "dummy.txt")
with open(dummy_file_path, "w") as f:
f.write("dummy content")
tracker = MLflowTracker(experiment_name="test_exp", logging_dir=self.tmpdir.name)
accelerator = Accelerator(log_with=tracker)
accelerator.init_trackers(project_name="test_exp")
tracker.log_artifact(dummy_file_path, artifact_path="artifact_dir")
run_id = tracker.active_run.info.run_id
accelerator.end_training()
self.assertIn(
"artifact_dir/dummy.txt",
[
artifact.path
for artifact in mlflow.artifacts.list_artifacts(run_id=run_id, artifact_path="artifact_dir")
],
)
def test_log_artifacts(self):
import mlflow
"""Test that log_artifacts calls mlflow.log_artifacts with the correct directory."""
dummy_dir = os.path.join(self.tmpdir.name, "dummy_dir")
os.mkdir(dummy_dir)
dummy_file_path = os.path.join(dummy_dir, "dummy.txt")
with open(dummy_file_path, "w") as f:
f.write("dummy content")
tracker = MLflowTracker(experiment_name="test_exp", logging_dir=self.tmpdir.name)
accelerator = Accelerator(log_with=tracker)
accelerator.init_trackers(project_name="test_exp")
tracker.log_artifacts(dummy_dir, artifact_path="artifact_dir")
run_id = tracker.active_run.info.run_id
accelerator.end_training()
self.assertIn(
"artifact_dir/dummy.txt",
[
artifact.path
for artifact in mlflow.artifacts.list_artifacts(run_id=run_id, artifact_path="artifact_dir")
],
)
@require_comet_ml
class CometMLTest(unittest.TestCase):
@staticmethod
def get_value_from_key(log_list, key: str, is_param: bool = False):
"Extracts `key` from Comet `log`"
for log in log_list:
j = json.loads(log)["payload"]
if is_param and "param" in j.keys():
if j["param"]["paramName"] == key:
return j["param"]["paramValue"]
if "log_other" in j.keys():
if j["log_other"]["key"] == key:
return j["log_other"]["val"]
if "metric" in j.keys():
if j["metric"]["metricName"] == key:
return j["metric"]["metricValue"]
if j.get("key", None) == key:
return j["value"]
def test_init_trackers(self):
with tempfile.TemporaryDirectory() as d:
tracker = CometMLTracker(
"test_project_with_config", online=False, experiment_config=ExperimentConfig(offline_directory=d)
)
accelerator = Accelerator(log_with=tracker)
config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"}
accelerator.init_trackers(None, config)
accelerator.end_training()
log = os.listdir(d)[0] # Comet is nice, it's just a zip file here
# We parse the raw logs
p = os.path.join(d, log)
archive = zipfile.ZipFile(p, "r")
log = archive.open("messages.json").read().decode("utf-8")
list_of_json = log.split("\n")[:-1]
assert self.get_value_from_key(list_of_json, "num_iterations", True) == 12
assert self.get_value_from_key(list_of_json, "learning_rate", True) == 0.01
assert self.get_value_from_key(list_of_json, "some_boolean", True) is False
assert self.get_value_from_key(list_of_json, "some_string", True) == "some_value"
def test_log(self):
with tempfile.TemporaryDirectory() as d:
tracker = CometMLTracker(
"test_project_with_config", online=False, experiment_config=ExperimentConfig(offline_directory=d)
)
accelerator = Accelerator(log_with=tracker)
accelerator.init_trackers(None)
values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"}
accelerator.log(values, step=0)
accelerator.end_training()
log = os.listdir(d)[0] # Comet is nice, it's just a zip file here
# We parse the raw logs
p = os.path.join(d, log)
archive = zipfile.ZipFile(p, "r")
log = archive.open("messages.json").read().decode("utf-8")
list_of_json = log.split("\n")[:-1]
assert self.get_value_from_key(list_of_json, "curr_step", True) == 0
assert self.get_value_from_key(list_of_json, "total_loss") == 0.1
assert self.get_value_from_key(list_of_json, "iteration") == 1
assert self.get_value_from_key(list_of_json, "my_text") == "some_value"
@require_clearml
class ClearMLTest(TempDirTestCase, MockingTestCase):
def setUp(self):
super().setUp()
# ClearML offline session location is stored in CLEARML_CACHE_DIR
self.add_mocks(mock.patch.dict(os.environ, {"CLEARML_CACHE_DIR": str(self.tmpdir)}))
@staticmethod
def _get_offline_dir(accelerator):
from clearml.config import get_offline_dir
return get_offline_dir(task_id=accelerator.get_tracker("clearml", unwrap=True).id)
@staticmethod
def _get_metrics(offline_dir):
metrics = []
with open(os.path.join(offline_dir, "metrics.jsonl")) as f:
json_lines = f.readlines()
for json_line in json_lines:
metrics.extend(json.loads(json_line))
return metrics
def test_init_trackers(self):
from clearml import Task
from clearml.utilities.config import text_to_config_dict
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"}
accelerator.init_trackers("test_project_with_config", config)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
with open(os.path.join(offline_dir, "task.json")) as f:
offline_session = json.load(f)
clearml_offline_config = text_to_config_dict(offline_session["configuration"]["General"]["value"])
assert config == clearml_offline_config
def test_log(self):
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log")
values_with_iteration = {"should_be_under_train": 1, "eval_value": 2, "test_value": 3.1, "train_value": 4.1}
accelerator.log(values_with_iteration, step=1)
single_values = {"single_value_1": 1.1, "single_value_2": 2.2}
accelerator.log(single_values)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
metrics = ClearMLTest._get_metrics(offline_dir)
assert (len(values_with_iteration) + len(single_values)) == len(metrics)
for metric in metrics:
if metric["metric"] == "Summary":
assert metric["variant"] in single_values
assert metric["value"] == single_values[metric["variant"]]
elif metric["metric"] == "should_be_under_train":
assert metric["variant"] == "train"
assert metric["iter"] == 1
assert metric["value"] == values_with_iteration["should_be_under_train"]
else:
values_with_iteration_key = metric["variant"] + "_" + metric["metric"]
assert values_with_iteration_key in values_with_iteration
assert metric["iter"] == 1
assert metric["value"] == values_with_iteration[values_with_iteration_key]
def test_log_images(self):
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log_images")
base_image = np.eye(256, 256, dtype=np.uint8) * 255
base_image_3d = np.concatenate((np.atleast_3d(base_image), np.zeros((256, 256, 2), dtype=np.uint8)), axis=2)
images = {
"base_image": base_image,
"base_image_3d": base_image_3d,
}
accelerator.get_tracker("clearml").log_images(images, step=1)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
images_saved = Path(os.path.join(offline_dir, "data")).rglob("*.jpeg")
assert len(list(images_saved)) == len(images)
def test_log_table(self):
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log_table")
accelerator.get_tracker("clearml").log_table(
"from lists with columns", columns=["A", "B", "C"], data=[[1, 3, 5], [2, 4, 6]]
)
accelerator.get_tracker("clearml").log_table("from lists", data=[["A2", "B2", "C2"], [7, 9, 11], [8, 10, 12]])
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
metrics = ClearMLTest._get_metrics(offline_dir)
assert len(metrics) == 2
for metric in metrics:
assert metric["metric"] in ("from lists", "from lists with columns")
plot = json.loads(metric["plot_str"])
if metric["metric"] == "from lists with columns":
print(plot["data"][0])
self.assertCountEqual(plot["data"][0]["header"]["values"], ["A", "B", "C"])
self.assertCountEqual(plot["data"][0]["cells"]["values"], [[1, 2], [3, 4], [5, 6]])
else:
self.assertCountEqual(plot["data"][0]["header"]["values"], ["A2", "B2", "C2"])
self.assertCountEqual(plot["data"][0]["cells"]["values"], [[7, 8], [9, 10], [11, 12]])
@require_pandas
def test_log_table_pandas(self):
import pandas as pd
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log_table_pandas")
accelerator.get_tracker("clearml").log_table(
"from df", dataframe=pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}), step=1
)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
metrics = ClearMLTest._get_metrics(offline_dir)
assert len(metrics) == 1
assert metrics[0]["metric"] == "from df"
plot = json.loads(metrics[0]["plot_str"])
self.assertCountEqual(plot["data"][0]["header"]["values"], [["A"], ["B"], ["C"]])
self.assertCountEqual(plot["data"][0]["cells"]["values"], [[1, 2], [3, 4], [5, 6]])
@require_swanlab
@mock.patch.dict(os.environ, {"SWANLAB_MODE": "local"})
class SwanLabTrackingTest(TempDirTestCase, MockingTestCase):
def setUp(self):
super().setUp()
# Setting Path where SwanLab parsed log files are saved via the SWANLAB_LOG_DIR env var
self.add_mocks(mock.patch.dict(os.environ, {"SWANLAB_LOG_DIR": self.tmpdir}))
@skip
def test_swanlab(self):
# Disable hardware monitoring to prevent errors in test mode.
import swanlab
from swanlab.log.backup import BackupHandler
from swanlab.log.backup.datastore import DataStore
from swanlab.log.backup.models import ModelsParser
swanlab.merge_settings(swanlab.Settings(hardware_monitor=False))
# Start a fake training session.
accelerator = Accelerator(log_with="swanlab")
project_name = "test_project_with_config"
experiment_name = "test"
description = "test project for swanlab"
tags = ["my_tag"]
config = {
"epochs": 10,
"learning_rate": 0.01,
"offset": 0.1,
}
kwargs = {
"swanlab": {
"experiment_name": experiment_name,
"description": description,
"tags": tags,
}
}
accelerator.init_trackers(project_name, config, kwargs)
record_metrics = []
record_scalars = []
record_images_count = 0
record_logs = []
for epoch in range(1, swanlab.config.epochs):
acc = 1 - 2**-epoch - random.random() / epoch - 0.1
loss = 2**-epoch + random.random() / epoch + 0.1
ll = swanlab.log(
{
"accuracy": acc,
"loss": loss,
"image": swanlab.Image(np.random.random((3, 3, 3))),
},
step=epoch,
)
log = f"epoch={epoch}, accuracy={acc}, loss={loss}"
print(log)
record_scalars.extend([acc, loss])
record_images_count += 1
record_logs.append(log)
record_metrics.extend([x for _, x in ll.items()])
accelerator.end_training()
# Load latest offline log
run_dir = swanlab.get_run().public.run_dir
assert os.path.exists(run_dir) is True
ds = DataStore()
ds.open_for_scan(os.path.join(run_dir.__str__(), BackupHandler.BACKUP_FILE).__str__())
with ModelsParser() as models_parser:
for record in ds:
if record is None:
continue
models_parser.parse_record(record)
header, project, experiment, logs, runtime, columns, scalars, medias, footer = models_parser.get_parsed()
# test file header
assert header.backup_type == "DEFAULT"
# test project info
assert project.name == project_name
assert project.workspace is None
assert project.public is None
# test experiment info
assert experiment.name is not None
assert experiment.description == description
assert experiment.tags == tags
# test log record
backup_logs = [log.message for log in logs]
for record_log in record_logs:
assert record_log in backup_logs, "Log not found in backup logs: " + record_log
# test runtime info
runtime_info = runtime.to_file_model(os.path.join(run_dir.__str__(), "files"))
assert runtime_info.conda is None, "Not using conda, should be None"
assert isinstance(runtime_info.requirements, str), "Requirements should be a string"
assert isinstance(runtime_info.metadata, dict), "Metadata should be a dictionary"
assert isinstance(runtime_info.config, dict), "Config should be a dictionary"
for key in runtime_info.config:
assert key in config, f"Config key {key} not found in original config"
assert runtime_info.config[key]["value"] == config[key], (
f"Config value for {key} does not match original value"
)
# test scalar
assert len(scalars) + len(medias) == len(record_metrics), "Total metrics count does not match"
backup_scalars = [
metric.metric["data"]
for metric in record_metrics
if metric.column_info.chart_type.value.column_type == "FLOAT"
]
assert len(backup_scalars) == len(scalars), "Total scalars count does not match"
for scalar in backup_scalars:
assert scalar in record_scalars, f"Scalar {scalar} not found in original scalars"
backup_images = [
metric for metric in record_metrics if metric.column_info.chart_type.value.column_type == "IMAGE"
]
assert len(backup_images) == record_images_count, "Total images count does not match"
class MyCustomTracker(GeneralTracker):
"Basic tracker that writes to a csv for testing"
_col_names = [
"total_loss",
"iteration",
"my_text",
"learning_rate",
"num_iterations",
"some_boolean",
"some_string",
]
name = "my_custom_tracker"
requires_logging_directory = False
def __init__(self, dir: str, **kwargs):
super().__init__(**kwargs)
self.log_dir = dir
self.f = None
self.writer = None
def start(self):
if self.f is None:
self.f = open(os.path.join(self.log_dir, "log.csv"), "w+")
self.writer = csv.DictWriter(self.f, fieldnames=self._col_names)
self.writer.writeheader()
@property
def tracker(self):
return self.writer
def store_init_configuration(self, values: dict):
logger.info("Call init")
self.writer.writerow(values)
def log(self, values: dict, step: Optional[int]):
logger.info("Call log")
self.writer.writerow(values)
def finish(self):
self.f.close()
class CustomTrackerTestCase(unittest.TestCase):
def test_init_trackers(self):
with tempfile.TemporaryDirectory() as d:
tracker = MyCustomTracker(d)
accelerator = Accelerator(log_with=tracker)
config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"}
accelerator.init_trackers("Some name", config)
accelerator.end_training()
with open(f"{d}/log.csv") as f:
data = csv.DictReader(f)
data = next(data)
truth = {
"total_loss": "",
"iteration": "",
"my_text": "",
"learning_rate": "0.01",
"num_iterations": "12",
"some_boolean": "False",
"some_string": "some_value",
}
assert data == truth
def test_log(self):
with tempfile.TemporaryDirectory() as d:
tracker = MyCustomTracker(d)
accelerator = Accelerator(log_with=tracker)
accelerator.init_trackers("Some name")
values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"}
accelerator.log(values, step=0)
accelerator.end_training()
with open(f"{d}/log.csv") as f:
data = csv.DictReader(f)
data = next(data)
truth = {
"total_loss": "0.1",
"iteration": "1",
"my_text": "some_value",
"learning_rate": "",
"num_iterations": "",
"some_boolean": "",
"some_string": "",
}
assert data == truth
@require_dvclive
@mock.patch("dvclive.live.get_dvc_repo", return_value=None)
class DVCLiveTrackingTest(unittest.TestCase):
def test_init_trackers(self, mock_repo):
project_name = "test_project_with_config"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="dvclive")
config = {
"num_iterations": 12,
"learning_rate": 1e-2,
"some_boolean": False,
"some_string": "some_value",
}
init_kwargs = {"dvclive": {"dir": dirpath, "save_dvc_exp": False, "dvcyaml": None}}
accelerator.init_trackers(project_name, config, init_kwargs)
accelerator.end_training()
live = accelerator.trackers[0].live
params = load_yaml(live.params_file)
assert params == config
def test_log(self, mock_repo):
project_name = "test_project_with_log"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="dvclive", project_dir=dirpath)
init_kwargs = {"dvclive": {"dir": dirpath, "save_dvc_exp": False, "dvcyaml": None}}
accelerator.init_trackers(project_name, init_kwargs=init_kwargs)
values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"}
# Log step 0
accelerator.log(values)
# Log step 1
accelerator.log(values)
# Log step 3 (skip step 2)
accelerator.log(values, step=3)
accelerator.end_training()
live = accelerator.trackers[0].live
logs, latest = parse_metrics(live)
assert latest.pop("step") == 3
assert latest == values
scalars = os.path.join(live.plots_dir, Metric.subfolder)
for val in values.keys():
val_path = os.path.join(scalars, f"{val}.tsv")
steps = [int(row["step"]) for row in logs[val_path]]
assert steps == [0, 1, 3]
class TrackerDeferredInitializationTest(unittest.TestCase):
"""
Tests tracker's deferred initialization via `start()` method, preventing
premature `PartialState` access (and `torch.distributed` init) before
`Accelerator` has configured the distributed environment, especially with
`InitProcessGroupKwargs`.
"""
@require_tensorboard
def test_tensorboard_deferred_init(self):
"""Test that TensorBoard tracker initialization doesn't initialize distributed"""
with tempfile.TemporaryDirectory() as temp_dir:
PartialState._reset_state()
tracker = TensorBoardTracker(run_name="test_tb", logging_dir=temp_dir)
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_wandb
def test_wandb_deferred_init(self):
"""Test that WandB tracker initialization doesn't initialize distributed"""
PartialState._reset_state()
tracker = WandBTracker(run_name="test_wandb")
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_trackio
def test_trackio_deferred_init(self):
"""Test that trackio tracker initialization doesn't initialize distributed"""
PartialState._reset_state()
tracker = TrackioTracker(run_name="test_trackio")
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_comet_ml
def test_comet_ml_deferred_init(self):
"""Test that CometML tracker initialization doesn't initialize distributed"""
PartialState._reset_state()
tracker = CometMLTracker(run_name="test_comet")
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_aim
def test_aim_deferred_init(self):
"""Test that Aim tracker initialization doesn't initialize distributed"""
with tempfile.TemporaryDirectory() as temp_dir:
PartialState._reset_state()
tracker = AimTracker(run_name="test_aim", repo=temp_dir)
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_mlflow
def test_mlflow_deferred_init(self):
"""Test that MLflow tracker initialization doesn't initialize distributed"""
with tempfile.TemporaryDirectory() as temp_dir:
PartialState._reset_state()
tracker = MLflowTracker(experiment_name="test_mlflow", logging_dir=temp_dir)
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_clearml
def test_clearml_deferred_init(self):
"""Test that ClearML tracker initialization doesn't initialize distributed"""
PartialState._reset_state()
tracker = ClearMLTracker(run_name="test_clearml")
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_dvclive
def test_dvclive_deferred_init(self):
"""Test that DVCLive tracker initialization doesn't initialize distributed"""
with tempfile.TemporaryDirectory() as temp_dir:
PartialState._reset_state()
tracker = DVCLiveTracker(dir=temp_dir)
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
@require_swanlab
def test_swanlab_deferred_init(self):
"""Test that SwanLab tracker initialization doesn't initialize distributed"""
PartialState._reset_state()
tracker = SwanLabTracker(run_name="test_swanlab")
self.assertEqual(PartialState._shared_state, {})
_ = Accelerator(log_with=tracker)
self.assertNotEqual(PartialState._shared_state, {})
|