File: test_utils.py

package info (click to toggle)
accelerate 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,900 kB
  • sloc: python: 40,061; sh: 90; makefile: 79
file content (592 lines) | stat: -rw-r--r-- 23,288 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import tempfile
import unittest
import warnings
from collections import UserDict, namedtuple
from typing import NamedTuple, Optional
from unittest.mock import Mock, patch

import numpy as np
import pytest
import torch
from torch import nn

from accelerate.big_modeling import cpu_offload_with_hook
from accelerate.hooks import attach_align_device_hook, remove_hook_from_module
from accelerate.state import PartialState
from accelerate.test_utils.testing import (
    require_huggingface_suite,
    require_non_cpu,
    require_non_torch_xla,
    require_torch_min_version,
    require_tpu,
    require_triton,
    torch_device,
)
from accelerate.test_utils.training import RegressionModel
from accelerate.utils import (
    CannotPadNestedTensorWarning,
    check_os_kernel,
    clear_environment,
    convert_dict_to_env_variables,
    convert_outputs_to_fp32,
    convert_to_fp32,
    extract_model_from_parallel,
    find_device,
    has_offloaded_params,
    is_torch_xla_available,
    listify,
    pad_across_processes,
    pad_input_tensors,
    patch_environment,
    purge_accelerate_environment,
    recursively_apply,
    save,
    send_to_device,
)
from accelerate.utils.operations import is_namedtuple


if is_torch_xla_available():
    import torch_xla.distributed.spmd as xs
    import torch_xla.runtime as xr
    from torch_xla.experimental.spmd_fully_sharded_data_parallel import SpmdFullyShardedDataParallel as FSDPv2

ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c")


class UtilsTester(unittest.TestCase):
    def setUp(self):
        # logging requires initialized state
        PartialState()

    def test_send_to_device(self):
        tensor = torch.randn(5, 2)
        device = torch.device(f"{torch_device}:0")

        result1 = send_to_device(tensor, device)
        assert torch.equal(result1.cpu(), tensor)

        result2 = send_to_device((tensor, [tensor, tensor], 1), device)
        assert isinstance(result2, tuple)
        assert torch.equal(result2[0].cpu(), tensor)
        assert isinstance(result2[1], list)
        assert torch.equal(result2[1][0].cpu(), tensor)
        assert torch.equal(result2[1][1].cpu(), tensor)
        assert result2[2] == 1

        result2 = send_to_device({"a": tensor, "b": [tensor, tensor], "c": 1}, device)
        assert isinstance(result2, dict)
        assert torch.equal(result2["a"].cpu(), tensor)
        assert isinstance(result2["b"], list)
        assert torch.equal(result2["b"][0].cpu(), tensor)
        assert torch.equal(result2["b"][1].cpu(), tensor)
        assert result2["c"] == 1

        result3 = send_to_device(ExampleNamedTuple(a=tensor, b=[tensor, tensor], c=1), device)
        assert isinstance(result3, ExampleNamedTuple)
        assert torch.equal(result3.a.cpu(), tensor)
        assert isinstance(result3.b, list)
        assert torch.equal(result3.b[0].cpu(), tensor)
        assert torch.equal(result3.b[1].cpu(), tensor)
        assert result3.c == 1

        result4 = send_to_device(UserDict({"a": tensor, "b": [tensor, tensor], "c": 1}), device)
        assert isinstance(result4, UserDict)
        assert torch.equal(result4["a"].cpu(), tensor)
        assert isinstance(result4["b"], list)
        assert torch.equal(result4["b"][0].cpu(), tensor)
        assert torch.equal(result4["b"][1].cpu(), tensor)
        assert result4["c"] == 1

    def test_honor_type(self):
        with self.assertRaises(TypeError) as cm:
            _ = recursively_apply(torch.tensor, (torch.tensor(1), 1), error_on_other_type=True)
        assert (
            str(cm.exception)
            == "Unsupported types (<class 'int'>) passed to `tensor`. Only nested list/tuple/dicts of objects that are valid for `is_torch_tensor` should be passed."
        )

    def test_listify(self):
        tensor = torch.tensor([1, 2, 3, 4, 5])
        assert listify(tensor) == [1, 2, 3, 4, 5]

        tensor = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
        assert listify(tensor) == [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]

        tensor = torch.tensor([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]])
        assert listify(tensor) == [[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]

    def test_patch_environment(self):
        with patch_environment(aa=1, BB=2):
            assert os.environ.get("AA") == "1"
            assert os.environ.get("BB") == "2"

        assert "AA" not in os.environ
        assert "BB" not in os.environ

    def test_patch_environment_key_exists(self):
        # check that patch_environment correctly restores pre-existing env vars
        with patch_environment(aa=1, BB=2):
            assert os.environ.get("AA") == "1"
            assert os.environ.get("BB") == "2"

            with patch_environment(Aa=10, bb="20", cC=30):
                assert os.environ.get("AA") == "10"
                assert os.environ.get("BB") == "20"
                assert os.environ.get("CC") == "30"

            assert os.environ.get("AA") == "1"
            assert os.environ.get("BB") == "2"
            assert "CC" not in os.environ

        assert "AA" not in os.environ
        assert "BB" not in os.environ
        assert "CC" not in os.environ

    def test_patch_environment_restores_on_error(self):
        # we need to find an upper-case envvar
        # because `patch_environment upper-cases all keys...
        key, orig_value = next(kv for kv in os.environ.items() if kv[0].isupper())
        new_value = f"{orig_value}_foofoofoo"
        with pytest.raises(RuntimeError), patch_environment(**{key: new_value}):
            assert os.environ[key] == os.getenv(key) == new_value  # noqa: TID251
            raise RuntimeError("Oopsy daisy!")
        assert os.environ[key] == os.getenv(key) == orig_value  # noqa: TID251

    def test_clear_environment(self):
        key, value = os.environ.copy().popitem()
        with pytest.raises(RuntimeError), clear_environment():
            assert key not in os.environ
            assert not os.getenv(key)  # test the environment is actually cleared  # noqa: TID251
            raise RuntimeError("Oopsy daisy!")
        # Test values are restored
        assert os.getenv(key) == os.environ[key] == value  # noqa: TID251

    def test_can_undo_convert_outputs(self):
        model = RegressionModel()
        model._original_forward = model.forward
        model.forward = convert_outputs_to_fp32(model.forward)
        model = extract_model_from_parallel(model, keep_fp32_wrapper=False)
        _ = pickle.dumps(model)

    @require_non_cpu
    def test_can_undo_fp16_conversion(self):
        model = RegressionModel()
        model._original_forward = model.forward
        model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward)
        model.forward = convert_outputs_to_fp32(model.forward)
        model = extract_model_from_parallel(model, keep_fp32_wrapper=False)
        _ = pickle.dumps(model)

    @require_triton
    @require_non_cpu
    def test_dynamo(self):
        model = RegressionModel()
        model._original_forward = model.forward
        model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward)
        model.forward = convert_outputs_to_fp32(model.forward)
        model.forward = torch.compile(model.forward, backend="inductor")
        inputs = torch.randn(4, 10).to(torch_device)
        _ = model(inputs)

    def test_extract_model(self):
        model = RegressionModel()
        # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
        distributed_model = torch.nn.parallel.DataParallel(model)
        model_unwrapped = extract_model_from_parallel(distributed_model)

        assert model == model_unwrapped

    @require_tpu
    @require_huggingface_suite
    def test_extract_model_recursive_fsdpv2(self):
        # Specifically tests for FSDPv2 extraction
        # reported in https://github.com/huggingface/transformers/pull/29780
        xr.use_spmd()
        from transformers import AutoModelForCausalLM

        model = AutoModelForCausalLM.from_pretrained("gpt2")
        orig_state_dict_keys = list(model.state_dict().keys())
        num_devices = xr.global_runtime_device_count()
        # Set environment for FSDPv2 to be active
        xs.set_global_mesh(xs.Mesh(np.array(range(num_devices)), (num_devices, 1), axis_names=("fsdp", "tensor")))

        def nested_wrap(model):
            layer = model.wte
            wrapped_layer = FSDPv2(layer)
            model.wte = wrapped_layer
            return model

        wrapped_model = nested_wrap(model)
        unwrapped_model = extract_model_from_parallel(wrapped_model, recursive=True)
        unwrapped_state_dict_keys = list(unwrapped_model.state_dict().keys())
        for original_key, new_key in zip(orig_state_dict_keys, unwrapped_state_dict_keys):
            assert original_key == new_key, f"Keys did not align: {original_key} != {new_key}"

    def test_dynamo_extract_model_keep_torch_compile(self):
        model = RegressionModel()
        compiled_model = torch.compile(model)

        # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
        distributed_model = torch.nn.parallel.DataParallel(model)
        distributed_compiled_model = torch.compile(distributed_model)
        compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=True)

        assert compiled_model._orig_mod == compiled_model_unwrapped._orig_mod

    def test_dynamo_extract_model_remove_torch_compile(self):
        model = RegressionModel()
        compiled_model = torch.compile(model)

        # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
        distributed_model = torch.nn.parallel.DataParallel(model)
        distributed_compiled_model = torch.compile(distributed_model)
        compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=False)

        assert compiled_model._orig_mod == compiled_model_unwrapped

    def test_find_device(self):
        assert find_device([1, "a", torch.tensor([1, 2, 3])]) == torch.device("cpu")
        assert find_device({"a": 1, "b": torch.tensor([1, 2, 3])}) == torch.device("cpu")
        assert find_device([1, "a"]) is None

    def test_check_os_kernel_no_warning_when_release_gt_min(self):
        # min version is 5.5
        with patch("platform.uname", return_value=Mock(release="5.15.0-35-generic", system="Linux")):
            with warnings.catch_warnings(record=True) as w:
                check_os_kernel()
            assert len(w) == 0

    def test_check_os_kernel_no_warning_when_not_linux(self):
        # system must be Linux
        with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Darwin")):
            with warnings.catch_warnings(record=True) as w:
                check_os_kernel()
            assert len(w) == 0

    def test_check_os_kernel_warning_when_release_lt_min(self):
        # min version is 5.5
        with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Linux")):
            with self.assertLogs() as ctx:
                check_os_kernel()
            assert len(ctx.records) == 1
            assert ctx.records[0].levelname == "WARNING"
            assert "5.4.0" in ctx.records[0].msg
            assert "5.5.0" in ctx.records[0].msg

    @require_non_torch_xla
    def test_save_safetensor_shared_memory(self):
        class Model(nn.Module):
            def __init__(self):
                super().__init__()
                self.a = nn.Linear(100, 100)
                self.b = self.a

            def forward(self, x):
                return self.b(self.a(x))

        model = Model()
        with tempfile.TemporaryDirectory() as tmp_dir:
            save_path = os.path.join(tmp_dir, "model.safetensors")
            with self.assertLogs(level="WARNING") as log:
                save(model.state_dict(), save_path, safe_serialization=True)
                assert len(log.records) == 1
                assert "Removed shared tensor" in log.output[0]

    @require_torch_min_version(version="1.12")
    def test_pad_across_processes(self):
        from torch.nested import nested_tensor

        nt = nested_tensor([[1, 2, 3], [1], [1, 2]])
        with self.assertWarns(CannotPadNestedTensorWarning):
            nt2 = pad_across_processes(nt)
        assert nt is nt2

        # Basic functionality
        tensor = torch.randn(4, 3, 100)
        padded_tensor = pad_across_processes(tensor, dim=-1)
        assert padded_tensor.shape[-1] == 100

        # dim = -4 is out of bounds
        padded_tensor = pad_across_processes(tensor, dim=-4)
        assert padded_tensor is tensor

    def test_slice_and_concatenate(self):
        # First base case: 2 processes, batch size of 1
        num_processes = 2
        batch_size = 1
        batch = torch.rand(batch_size, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 2 items now
        assert result.shape == torch.Size([2, 4])

        # Second base case: 2 processes, batch size of 3
        num_processes = 2
        batch_size = 3
        batch = torch.rand(batch_size, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 4 items now
        assert result.shape == torch.Size([4, 4])

        # Third base case: 3 processes, batch size of 4
        num_processes = 3
        batch_size = 4
        batch = torch.rand(batch_size, 4, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 6 items now
        assert result.shape == torch.Size([6, 4, 4])

        # Fourth base case: 4 processes, batch size of 3
        num_processes = 4
        batch_size = 3
        batch = torch.rand(batch_size, 4, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 4 items now
        assert result.shape == torch.Size([4, 4, 4])

        # Fifth base case: 6 processes, batch size of 4
        num_processes = 6
        batch_size = 4
        batch = torch.rand(batch_size, 4, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 6 items now
        assert result.shape == torch.Size([6, 4, 4])

        # Sixth base case: 6 processes, batch size of 1
        num_processes = 6
        batch_size = 1
        batch = torch.rand(batch_size, 4, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 6 items now
        assert result.shape == torch.Size([6, 4, 4])

        # Seventh base case: 6 processes, batch size of 2
        num_processes = 6
        batch_size = 2
        batch = torch.rand(batch_size, 4, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 6 items now
        assert result.shape == torch.Size([6, 4, 4])

        # Eighth base case: 6 processes, batch size of 61
        num_processes = 6
        batch_size = 61
        batch = torch.rand(batch_size, 4, 4)
        result = pad_input_tensors(batch, batch_size, num_processes)
        # We should expect there to be 66 items now
        assert result.shape == torch.Size([66, 4, 4])

    def test_send_to_device_compiles(self):
        compiled_send_to_device = torch.compile(send_to_device, fullgraph=True)
        compiled_send_to_device(torch.zeros([1], dtype=torch.bfloat16), "cpu")

    def test_convert_to_fp32(self):
        compiled_convert_to_fp32 = torch.compile(convert_to_fp32, fullgraph=True)
        compiled_convert_to_fp32(torch.zeros([1], dtype=torch.bfloat16))

    def test_named_tuples(self):
        class QuantTensorBase(NamedTuple):
            value: torch.Tensor
            scale: Optional[torch.Tensor]
            zero_point: Optional[torch.Tensor]

        class Second(QuantTensorBase):
            pass

        a = QuantTensorBase(torch.tensor(1.0), None, None)
        b = Second(torch.tensor(1.0), None, None)

        point = namedtuple("Point", ["x", "y"])
        p = point(11, y=22)

        self.assertTrue(is_namedtuple(a))
        self.assertTrue(is_namedtuple(b))
        self.assertTrue(is_namedtuple(p))
        self.assertFalse(is_namedtuple((1, 2)))
        self.assertFalse(is_namedtuple("hey"))
        self.assertFalse(is_namedtuple(object()))

    def test_convert_dict_to_env_variables(self):
        env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
        with self.assertLogs("accelerate.utils.environment", level="WARNING"):
            valid_env_items = convert_dict_to_env_variables(env)
        assert valid_env_items == ["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]

    def test_has_offloaded_params(self):
        model = RegressionModel()
        assert not has_offloaded_params(model)

        attach_align_device_hook(model, offload=False)
        assert not has_offloaded_params(model)

        remove_hook_from_module(model)
        model, _ = cpu_offload_with_hook(model)
        assert not has_offloaded_params(model)

        remove_hook_from_module(model)
        attach_align_device_hook(model, offload=True)
        assert has_offloaded_params(model)


def set_dummy_accelerate_env_var():
    """Set an accelerate env var

    This class emulates the behavior of, for instance, transformers.TrainingArguments, which is allowed to set
    accelerate env vars but does not clean them up. E.g.

    TrainingArguments(fp16=True, output_dir="/tmp/test")

    leaves ACCELERATE_MIXED_PRECISION=fp16 as an env var.
    """
    os.environ["ACCELERATE_SOME_ENV_VAR"] = "true"


@purge_accelerate_environment
class MyUnittest(unittest.TestCase):
    def test_purge_env_vars_unittest_1(self):
        os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
        set_dummy_accelerate_env_var()
        assert "ACCELERATE_SOME_ENV_VAR" in os.environ

    def test_purge_env_vars_unittest_2(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


@unittest.skipIf(False, "dummy unittest wrapper")
@purge_accelerate_environment
@unittest.skipUnless(True, "dummy unittest wrapper")
class MyUnittestWithDecorators(unittest.TestCase):
    def test_purge_env_vars_unittest_with_wrapper_1(self):
        os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
        set_dummy_accelerate_env_var()
        assert "ACCELERATE_SOME_ENV_VAR" in os.environ

    def test_purge_env_vars_unittest_with_wrapper_2(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ

    @unittest.skipIf(False, "dummy unittest wrapper")
    def test_purge_env_vars_unittest_with_wrapper_3(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ

    @unittest.skipIf(True, "this is always skipped")
    def test_purge_env_vars_unittest_with_wrapper_4(self):
        # ensure that unittest markers still do their job
        assert False


@purge_accelerate_environment
class _BaseCls(unittest.TestCase):
    def test_purge_env_vars_unittest_with_inheritance_3(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


class MyUnittestWithInheritance(_BaseCls):
    def test_purge_env_vars_unittest_with_inheritance_1(self):
        os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
        set_dummy_accelerate_env_var()
        assert "ACCELERATE_SOME_ENV_VAR" in os.environ

    def test_purge_env_vars_unittest_with_inheritance_2(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


@purge_accelerate_environment
class TestMyPytest:
    def test_purge_env_vars_pytest_1(self):
        os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
        set_dummy_accelerate_env_var()
        assert "ACCELERATE_SOME_ENV_VAR" in os.environ

    def test_purge_env_vars_pytest_2(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


@pytest.fixture
def dummy_fixture():
    pass


@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
@purge_accelerate_environment
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
class TestPytestWithWrapper:
    def test_purge_env_vars_pytest_with_wrapper_1(self):
        os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
        set_dummy_accelerate_env_var()
        assert "ACCELERATE_SOME_ENV_VAR" in os.environ

    def test_purge_env_vars_pytest_with_wrapper_2(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ

    @pytest.mark.skipif(False, reason="dummy pytest wrapper")
    @pytest.mark.usefixtures("dummy_fixture")
    def test_purge_env_vars_pytest_with_wrapper_3(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ

    @pytest.mark.skipif(True, reason="this is always skipped")
    def test_purge_env_vars_pytest_with_wrapper_4_should_be_skipped(self):
        # ensure that pytest markers still do their job
        assert False


@purge_accelerate_environment
class _PytestBaseCls:
    def test_purge_env_vars_pytest_with_inheritance_3(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


class TestPytestWithInheritance(_PytestBaseCls):
    def test_purge_env_vars_pytest_with_inheritance_1(self):
        os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
        set_dummy_accelerate_env_var()
        assert "ACCELERATE_SOME_ENV_VAR" in os.environ

    def test_purge_env_vars_pytest_with_inheritance_2(self):
        assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


@purge_accelerate_environment
def test_purge_env_vars_standalone_1():
    os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
    set_dummy_accelerate_env_var()
    assert "ACCELERATE_SOME_ENV_VAR" in os.environ


def test_purge_env_vars_standalone_2():
    assert "ACCELERATE_SOME_ENV_VAR" not in os.environ


def test_purge_env_vars_restores_previous_values():
    # Ensure that purge_accelerate_environment restores values of previous accelerate env vars and does not delete
    # untouched env vars.
    @purge_accelerate_environment
    def dummy_func():
        os.environ["ACCELERATE_SOME_ENV_VAR"] = "456"

    os.environ["ACCELERATE_SOME_ENV_VAR"] = "1"
    os.environ["ACCELERATE_ANOTHER_ENV_VAR"] = "2"

    dummy_func()

    assert os.environ["ACCELERATE_SOME_ENV_VAR"] == "1"
    assert os.environ["ACCELERATE_ANOTHER_ENV_VAR"] == "2"

    del os.environ["ACCELERATE_SOME_ENV_VAR"]
    del os.environ["ACCELERATE_ANOTHER_ENV_VAR"]