1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import tempfile
import unittest
import warnings
from collections import UserDict, namedtuple
from typing import NamedTuple, Optional
from unittest.mock import Mock, patch
import numpy as np
import pytest
import torch
from torch import nn
from accelerate.big_modeling import cpu_offload_with_hook
from accelerate.hooks import attach_align_device_hook, remove_hook_from_module
from accelerate.state import PartialState
from accelerate.test_utils.testing import (
require_huggingface_suite,
require_non_cpu,
require_non_torch_xla,
require_torch_min_version,
require_tpu,
require_triton,
torch_device,
)
from accelerate.test_utils.training import RegressionModel
from accelerate.utils import (
CannotPadNestedTensorWarning,
check_os_kernel,
clear_environment,
convert_dict_to_env_variables,
convert_outputs_to_fp32,
convert_to_fp32,
extract_model_from_parallel,
find_device,
has_offloaded_params,
is_torch_xla_available,
listify,
pad_across_processes,
pad_input_tensors,
patch_environment,
purge_accelerate_environment,
recursively_apply,
save,
send_to_device,
)
from accelerate.utils.operations import is_namedtuple
if is_torch_xla_available():
import torch_xla.distributed.spmd as xs
import torch_xla.runtime as xr
from torch_xla.experimental.spmd_fully_sharded_data_parallel import SpmdFullyShardedDataParallel as FSDPv2
ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c")
class UtilsTester(unittest.TestCase):
def setUp(self):
# logging requires initialized state
PartialState()
def test_send_to_device(self):
tensor = torch.randn(5, 2)
device = torch.device(f"{torch_device}:0")
result1 = send_to_device(tensor, device)
assert torch.equal(result1.cpu(), tensor)
result2 = send_to_device((tensor, [tensor, tensor], 1), device)
assert isinstance(result2, tuple)
assert torch.equal(result2[0].cpu(), tensor)
assert isinstance(result2[1], list)
assert torch.equal(result2[1][0].cpu(), tensor)
assert torch.equal(result2[1][1].cpu(), tensor)
assert result2[2] == 1
result2 = send_to_device({"a": tensor, "b": [tensor, tensor], "c": 1}, device)
assert isinstance(result2, dict)
assert torch.equal(result2["a"].cpu(), tensor)
assert isinstance(result2["b"], list)
assert torch.equal(result2["b"][0].cpu(), tensor)
assert torch.equal(result2["b"][1].cpu(), tensor)
assert result2["c"] == 1
result3 = send_to_device(ExampleNamedTuple(a=tensor, b=[tensor, tensor], c=1), device)
assert isinstance(result3, ExampleNamedTuple)
assert torch.equal(result3.a.cpu(), tensor)
assert isinstance(result3.b, list)
assert torch.equal(result3.b[0].cpu(), tensor)
assert torch.equal(result3.b[1].cpu(), tensor)
assert result3.c == 1
result4 = send_to_device(UserDict({"a": tensor, "b": [tensor, tensor], "c": 1}), device)
assert isinstance(result4, UserDict)
assert torch.equal(result4["a"].cpu(), tensor)
assert isinstance(result4["b"], list)
assert torch.equal(result4["b"][0].cpu(), tensor)
assert torch.equal(result4["b"][1].cpu(), tensor)
assert result4["c"] == 1
def test_honor_type(self):
with self.assertRaises(TypeError) as cm:
_ = recursively_apply(torch.tensor, (torch.tensor(1), 1), error_on_other_type=True)
assert (
str(cm.exception)
== "Unsupported types (<class 'int'>) passed to `tensor`. Only nested list/tuple/dicts of objects that are valid for `is_torch_tensor` should be passed."
)
def test_listify(self):
tensor = torch.tensor([1, 2, 3, 4, 5])
assert listify(tensor) == [1, 2, 3, 4, 5]
tensor = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
assert listify(tensor) == [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]
tensor = torch.tensor([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]])
assert listify(tensor) == [[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]
def test_patch_environment(self):
with patch_environment(aa=1, BB=2):
assert os.environ.get("AA") == "1"
assert os.environ.get("BB") == "2"
assert "AA" not in os.environ
assert "BB" not in os.environ
def test_patch_environment_key_exists(self):
# check that patch_environment correctly restores pre-existing env vars
with patch_environment(aa=1, BB=2):
assert os.environ.get("AA") == "1"
assert os.environ.get("BB") == "2"
with patch_environment(Aa=10, bb="20", cC=30):
assert os.environ.get("AA") == "10"
assert os.environ.get("BB") == "20"
assert os.environ.get("CC") == "30"
assert os.environ.get("AA") == "1"
assert os.environ.get("BB") == "2"
assert "CC" not in os.environ
assert "AA" not in os.environ
assert "BB" not in os.environ
assert "CC" not in os.environ
def test_patch_environment_restores_on_error(self):
# we need to find an upper-case envvar
# because `patch_environment upper-cases all keys...
key, orig_value = next(kv for kv in os.environ.items() if kv[0].isupper())
new_value = f"{orig_value}_foofoofoo"
with pytest.raises(RuntimeError), patch_environment(**{key: new_value}):
assert os.environ[key] == os.getenv(key) == new_value # noqa: TID251
raise RuntimeError("Oopsy daisy!")
assert os.environ[key] == os.getenv(key) == orig_value # noqa: TID251
def test_clear_environment(self):
key, value = os.environ.copy().popitem()
with pytest.raises(RuntimeError), clear_environment():
assert key not in os.environ
assert not os.getenv(key) # test the environment is actually cleared # noqa: TID251
raise RuntimeError("Oopsy daisy!")
# Test values are restored
assert os.getenv(key) == os.environ[key] == value # noqa: TID251
def test_can_undo_convert_outputs(self):
model = RegressionModel()
model._original_forward = model.forward
model.forward = convert_outputs_to_fp32(model.forward)
model = extract_model_from_parallel(model, keep_fp32_wrapper=False)
_ = pickle.dumps(model)
@require_non_cpu
def test_can_undo_fp16_conversion(self):
model = RegressionModel()
model._original_forward = model.forward
model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward)
model.forward = convert_outputs_to_fp32(model.forward)
model = extract_model_from_parallel(model, keep_fp32_wrapper=False)
_ = pickle.dumps(model)
@require_triton
@require_non_cpu
def test_dynamo(self):
model = RegressionModel()
model._original_forward = model.forward
model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward)
model.forward = convert_outputs_to_fp32(model.forward)
model.forward = torch.compile(model.forward, backend="inductor")
inputs = torch.randn(4, 10).to(torch_device)
_ = model(inputs)
def test_extract_model(self):
model = RegressionModel()
# could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
distributed_model = torch.nn.parallel.DataParallel(model)
model_unwrapped = extract_model_from_parallel(distributed_model)
assert model == model_unwrapped
@require_tpu
@require_huggingface_suite
def test_extract_model_recursive_fsdpv2(self):
# Specifically tests for FSDPv2 extraction
# reported in https://github.com/huggingface/transformers/pull/29780
xr.use_spmd()
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("gpt2")
orig_state_dict_keys = list(model.state_dict().keys())
num_devices = xr.global_runtime_device_count()
# Set environment for FSDPv2 to be active
xs.set_global_mesh(xs.Mesh(np.array(range(num_devices)), (num_devices, 1), axis_names=("fsdp", "tensor")))
def nested_wrap(model):
layer = model.wte
wrapped_layer = FSDPv2(layer)
model.wte = wrapped_layer
return model
wrapped_model = nested_wrap(model)
unwrapped_model = extract_model_from_parallel(wrapped_model, recursive=True)
unwrapped_state_dict_keys = list(unwrapped_model.state_dict().keys())
for original_key, new_key in zip(orig_state_dict_keys, unwrapped_state_dict_keys):
assert original_key == new_key, f"Keys did not align: {original_key} != {new_key}"
def test_dynamo_extract_model_keep_torch_compile(self):
model = RegressionModel()
compiled_model = torch.compile(model)
# could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
distributed_model = torch.nn.parallel.DataParallel(model)
distributed_compiled_model = torch.compile(distributed_model)
compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=True)
assert compiled_model._orig_mod == compiled_model_unwrapped._orig_mod
def test_dynamo_extract_model_remove_torch_compile(self):
model = RegressionModel()
compiled_model = torch.compile(model)
# could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
distributed_model = torch.nn.parallel.DataParallel(model)
distributed_compiled_model = torch.compile(distributed_model)
compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=False)
assert compiled_model._orig_mod == compiled_model_unwrapped
def test_find_device(self):
assert find_device([1, "a", torch.tensor([1, 2, 3])]) == torch.device("cpu")
assert find_device({"a": 1, "b": torch.tensor([1, 2, 3])}) == torch.device("cpu")
assert find_device([1, "a"]) is None
def test_check_os_kernel_no_warning_when_release_gt_min(self):
# min version is 5.5
with patch("platform.uname", return_value=Mock(release="5.15.0-35-generic", system="Linux")):
with warnings.catch_warnings(record=True) as w:
check_os_kernel()
assert len(w) == 0
def test_check_os_kernel_no_warning_when_not_linux(self):
# system must be Linux
with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Darwin")):
with warnings.catch_warnings(record=True) as w:
check_os_kernel()
assert len(w) == 0
def test_check_os_kernel_warning_when_release_lt_min(self):
# min version is 5.5
with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Linux")):
with self.assertLogs() as ctx:
check_os_kernel()
assert len(ctx.records) == 1
assert ctx.records[0].levelname == "WARNING"
assert "5.4.0" in ctx.records[0].msg
assert "5.5.0" in ctx.records[0].msg
@require_non_torch_xla
def test_save_safetensor_shared_memory(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.a = nn.Linear(100, 100)
self.b = self.a
def forward(self, x):
return self.b(self.a(x))
model = Model()
with tempfile.TemporaryDirectory() as tmp_dir:
save_path = os.path.join(tmp_dir, "model.safetensors")
with self.assertLogs(level="WARNING") as log:
save(model.state_dict(), save_path, safe_serialization=True)
assert len(log.records) == 1
assert "Removed shared tensor" in log.output[0]
@require_torch_min_version(version="1.12")
def test_pad_across_processes(self):
from torch.nested import nested_tensor
nt = nested_tensor([[1, 2, 3], [1], [1, 2]])
with self.assertWarns(CannotPadNestedTensorWarning):
nt2 = pad_across_processes(nt)
assert nt is nt2
# Basic functionality
tensor = torch.randn(4, 3, 100)
padded_tensor = pad_across_processes(tensor, dim=-1)
assert padded_tensor.shape[-1] == 100
# dim = -4 is out of bounds
padded_tensor = pad_across_processes(tensor, dim=-4)
assert padded_tensor is tensor
def test_slice_and_concatenate(self):
# First base case: 2 processes, batch size of 1
num_processes = 2
batch_size = 1
batch = torch.rand(batch_size, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 2 items now
assert result.shape == torch.Size([2, 4])
# Second base case: 2 processes, batch size of 3
num_processes = 2
batch_size = 3
batch = torch.rand(batch_size, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 4 items now
assert result.shape == torch.Size([4, 4])
# Third base case: 3 processes, batch size of 4
num_processes = 3
batch_size = 4
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Fourth base case: 4 processes, batch size of 3
num_processes = 4
batch_size = 3
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 4 items now
assert result.shape == torch.Size([4, 4, 4])
# Fifth base case: 6 processes, batch size of 4
num_processes = 6
batch_size = 4
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Sixth base case: 6 processes, batch size of 1
num_processes = 6
batch_size = 1
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Seventh base case: 6 processes, batch size of 2
num_processes = 6
batch_size = 2
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Eighth base case: 6 processes, batch size of 61
num_processes = 6
batch_size = 61
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 66 items now
assert result.shape == torch.Size([66, 4, 4])
def test_send_to_device_compiles(self):
compiled_send_to_device = torch.compile(send_to_device, fullgraph=True)
compiled_send_to_device(torch.zeros([1], dtype=torch.bfloat16), "cpu")
def test_convert_to_fp32(self):
compiled_convert_to_fp32 = torch.compile(convert_to_fp32, fullgraph=True)
compiled_convert_to_fp32(torch.zeros([1], dtype=torch.bfloat16))
def test_named_tuples(self):
class QuantTensorBase(NamedTuple):
value: torch.Tensor
scale: Optional[torch.Tensor]
zero_point: Optional[torch.Tensor]
class Second(QuantTensorBase):
pass
a = QuantTensorBase(torch.tensor(1.0), None, None)
b = Second(torch.tensor(1.0), None, None)
point = namedtuple("Point", ["x", "y"])
p = point(11, y=22)
self.assertTrue(is_namedtuple(a))
self.assertTrue(is_namedtuple(b))
self.assertTrue(is_namedtuple(p))
self.assertFalse(is_namedtuple((1, 2)))
self.assertFalse(is_namedtuple("hey"))
self.assertFalse(is_namedtuple(object()))
def test_convert_dict_to_env_variables(self):
env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
with self.assertLogs("accelerate.utils.environment", level="WARNING"):
valid_env_items = convert_dict_to_env_variables(env)
assert valid_env_items == ["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]
def test_has_offloaded_params(self):
model = RegressionModel()
assert not has_offloaded_params(model)
attach_align_device_hook(model, offload=False)
assert not has_offloaded_params(model)
remove_hook_from_module(model)
model, _ = cpu_offload_with_hook(model)
assert not has_offloaded_params(model)
remove_hook_from_module(model)
attach_align_device_hook(model, offload=True)
assert has_offloaded_params(model)
def set_dummy_accelerate_env_var():
"""Set an accelerate env var
This class emulates the behavior of, for instance, transformers.TrainingArguments, which is allowed to set
accelerate env vars but does not clean them up. E.g.
TrainingArguments(fp16=True, output_dir="/tmp/test")
leaves ACCELERATE_MIXED_PRECISION=fp16 as an env var.
"""
os.environ["ACCELERATE_SOME_ENV_VAR"] = "true"
@purge_accelerate_environment
class MyUnittest(unittest.TestCase):
def test_purge_env_vars_unittest_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_unittest_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@unittest.skipIf(False, "dummy unittest wrapper")
@purge_accelerate_environment
@unittest.skipUnless(True, "dummy unittest wrapper")
class MyUnittestWithDecorators(unittest.TestCase):
def test_purge_env_vars_unittest_with_wrapper_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_unittest_with_wrapper_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@unittest.skipIf(False, "dummy unittest wrapper")
def test_purge_env_vars_unittest_with_wrapper_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@unittest.skipIf(True, "this is always skipped")
def test_purge_env_vars_unittest_with_wrapper_4(self):
# ensure that unittest markers still do their job
assert False
@purge_accelerate_environment
class _BaseCls(unittest.TestCase):
def test_purge_env_vars_unittest_with_inheritance_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
class MyUnittestWithInheritance(_BaseCls):
def test_purge_env_vars_unittest_with_inheritance_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_unittest_with_inheritance_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@purge_accelerate_environment
class TestMyPytest:
def test_purge_env_vars_pytest_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_pytest_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@pytest.fixture
def dummy_fixture():
pass
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
@purge_accelerate_environment
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
class TestPytestWithWrapper:
def test_purge_env_vars_pytest_with_wrapper_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_pytest_with_wrapper_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
def test_purge_env_vars_pytest_with_wrapper_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@pytest.mark.skipif(True, reason="this is always skipped")
def test_purge_env_vars_pytest_with_wrapper_4_should_be_skipped(self):
# ensure that pytest markers still do their job
assert False
@purge_accelerate_environment
class _PytestBaseCls:
def test_purge_env_vars_pytest_with_inheritance_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
class TestPytestWithInheritance(_PytestBaseCls):
def test_purge_env_vars_pytest_with_inheritance_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_pytest_with_inheritance_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@purge_accelerate_environment
def test_purge_env_vars_standalone_1():
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_standalone_2():
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
def test_purge_env_vars_restores_previous_values():
# Ensure that purge_accelerate_environment restores values of previous accelerate env vars and does not delete
# untouched env vars.
@purge_accelerate_environment
def dummy_func():
os.environ["ACCELERATE_SOME_ENV_VAR"] = "456"
os.environ["ACCELERATE_SOME_ENV_VAR"] = "1"
os.environ["ACCELERATE_ANOTHER_ENV_VAR"] = "2"
dummy_func()
assert os.environ["ACCELERATE_SOME_ENV_VAR"] == "1"
assert os.environ["ACCELERATE_ANOTHER_ENV_VAR"] == "2"
del os.environ["ACCELERATE_SOME_ENV_VAR"]
del os.environ["ACCELERATE_ANOTHER_ENV_VAR"]
|