1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
.TH ACE_Ordered_MultiSet 3 "1 Dec 2001" "ACE" \" -*- nroff -*-
.ad l
.nh
.SH NAME
ACE_Ordered_MultiSet \- Implement a simple ordered multiset of <T> of unbounded size that allows duplicates. This class template requires that < operator semantics be defined for the parameterized type <T>, but does not impose any restriction on how that ordering operator is implemented.
.SH SYNOPSIS
.br
.PP
\fC#include <Containers_T.h>\fR
.PP
.SS Public Types
.in +1c
.ti -1c
.RI "typedef \fBACE_Ordered_MultiSet_Iterator\fR<T> \fBITERATOR\fR"
.br
.in -1c
.SS Public Methods
.in +1c
.ti -1c
.RI "\fBACE_Ordered_MultiSet\fR (\fBACE_Allocator\fR *alloc = 0)"
.br
.RI "\fIConstructor. Use user specified allocation strategy if specified.\fR"
.ti -1c
.RI "\fBACE_Ordered_MultiSet\fR (const ACE_Ordered_MultiSet<T> &)"
.br
.RI "\fICopy constructor.\fR"
.ti -1c
.RI "\fB~ACE_Ordered_MultiSet\fR (void)"
.br
.RI "\fIDestructor.\fR"
.ti -1c
.RI "void \fBoperator=\fR (const ACE_Ordered_MultiSet<T> &)"
.br
.RI "\fIAssignment operator.\fR"
.ti -1c
.RI "int \fBis_empty\fR (void) const"
.br
.RI "\fIReturns 1 if the container is empty, otherwise returns 0.\fR"
.ti -1c
.RI "size_t \fBsize\fR (void) const"
.br
.RI "\fISize of the set.\fR"
.ti -1c
.RI "int \fBinsert\fR (const T &new_item)"
.br
.RI "\fIInsert <new_item> into the ordered multiset. Returns -1 if failures occur, else 0.\fR"
.ti -1c
.RI "int \fBinsert\fR (const T &new_item, \fBITERATOR\fR &iter)"
.br
.ti -1c
.RI "int \fBremove\fR (const T &item)"
.br
.RI "\fIRemove first occurrence of <item> from the set. Returns 0 if it removes the item, -1 if it can't find the item.\fR"
.ti -1c
.RI "int \fBfind\fR (const T &item, \fBITERATOR\fR &iter) const"
.br
.ti -1c
.RI "void \fBreset\fR (void)"
.br
.RI "\fIReset the to be empty.\fR"
.ti -1c
.RI "void \fBdump\fR (void) const"
.br
.RI "\fIDump the state of an object.\fR"
.in -1c
.SS Public Attributes
.in +1c
.ti -1c
.RI "\fBACE_ALLOC_HOOK_DECLARE\fR"
.br
.RI "\fIDeclare the dynamic allocation hooks.\fR"
.in -1c
.SS Private Methods
.in +1c
.ti -1c
.RI "int \fBinsert_from\fR (const T &item, \fBACE_DNode\fR<T> *start_position, \fBACE_DNode\fR<T> **new_position)"
.br
.ti -1c
.RI "int \fBlocate\fR (const T &item, \fBACE_DNode\fR<T> *start_position, \fBACE_DNode\fR<T> *&new_position) const"
.br
.ti -1c
.RI "void \fBdelete_nodes\fR (void)"
.br
.RI "\fIDelete all the nodes in the Set.\fR"
.ti -1c
.RI "void \fBcopy_nodes\fR (const ACE_Ordered_MultiSet<T> &)"
.br
.RI "\fICopy nodes into this set.\fR"
.in -1c
.SS Private Attributes
.in +1c
.ti -1c
.RI "\fBACE_DNode\fR<T>* \fBhead_\fR"
.br
.RI "\fIHead of the bilinked list of Nodes.\fR"
.ti -1c
.RI "\fBACE_DNode\fR<T>* \fBtail_\fR"
.br
.RI "\fIHead of the bilinked list of Nodes.\fR"
.ti -1c
.RI "size_t \fBcur_size_\fR"
.br
.RI "\fICurrent size of the set.\fR"
.ti -1c
.RI "\fBACE_Allocator\fR* \fBallocator_\fR"
.br
.RI "\fIAllocation strategy of the set.\fR"
.in -1c
.SS Friends
.in +1c
.ti -1c
.RI "class \fBACE_Ordered_MultiSet_Iterator< T >\fR"
.br
.in -1c
.SH DETAILED DESCRIPTION
.PP
.SS template<class T> template class ACE_Ordered_MultiSet
Implement a simple ordered multiset of <T> of unbounded size that allows duplicates. This class template requires that < operator semantics be defined for the parameterized type <T>, but does not impose any restriction on how that ordering operator is implemented.
.PP
.SH MEMBER TYPEDEF DOCUMENTATION
.PP
.SS template<classT> typedef \fBACE_Ordered_MultiSet_Iterator\fR<T> ACE_Ordered_MultiSet<T>::ITERATOR
.PP
.SH CONSTRUCTOR & DESTRUCTOR DOCUMENTATION
.PP
.SS template<classT> ACE_Ordered_MultiSet<T>::ACE_Ordered_MultiSet<T> (\fBACE_Allocator\fR * alloc = 0)
.PP
Constructor. Use user specified allocation strategy if specified.
.PP
.SS template<classT> ACE_Ordered_MultiSet<T>::ACE_Ordered_MultiSet<T> (const ACE_Ordered_MultiSet< T >&)
.PP
Copy constructor.
.PP
.SS template<classT> ACE_Ordered_MultiSet<T>::~ACE_Ordered_MultiSet<T> (void)
.PP
Destructor.
.PP
.SH MEMBER FUNCTION DOCUMENTATION
.PP
.SS template<classT> void ACE_Ordered_MultiSet<T>::copy_nodes (const ACE_Ordered_MultiSet< T >&)\fC [private]\fR
.PP
Copy nodes into this set.
.PP
.SS template<classT> void ACE_Ordered_MultiSet<T>::delete_nodes (void)\fC [private]\fR
.PP
Delete all the nodes in the Set.
.PP
.SS template<classT> void ACE_Ordered_MultiSet<T>::dump (void) const
.PP
Dump the state of an object.
.PP
.SS template<classT> int ACE_Ordered_MultiSet<T>::find (const T & item, \fBITERATOR\fR & iter) const
.PP
Finds first occurrance of <item> in the multiset, using the iterator's current position as a hint to improve performance. If find succeeds, it positions the iterator at that node and returns 0, or if it cannot locate the node, it leaves the iterator alone and just returns -1.
.SS template<classT> int ACE_Ordered_MultiSet<T>::insert (const T & new_item, \fBITERATOR\fR & iter)
.PP
Insert <new_item> into the ordered multiset, starting its search at the node pointed to by the iterator, and if insertion was successful, updates the iterator to point to the newly inserted node. Returns -1 if failures occur, else 0.
.SS template<classT> int ACE_Ordered_MultiSet<T>::insert (const T & new_item)
.PP
Insert <new_item> into the ordered multiset. Returns -1 if failures occur, else 0.
.PP
.SS template<classT> int ACE_Ordered_MultiSet<T>::insert_from (const T & item, \fBACE_DNode\fR< T >* start_position, \fBACE_DNode\fR< T >** new_position)\fC [private]\fR
.PP
Insert <item>, starting its search at the position given, and if successful updates the passed pointer to point to the newly inserted item's node.
.SS template<classT> int ACE_Ordered_MultiSet<T>::is_empty (void) const
.PP
Returns 1 if the container is empty, otherwise returns 0.
.PP
.SS template<classT> int ACE_Ordered_MultiSet<T>::locate (const T & item, \fBACE_DNode\fR< T >* start_position, \fBACE_DNode\fR< T >*& new_position) const\fC [private]\fR
.PP
looks for first occurance of <item> in the ordered set, using the passed starting position as a hint: if there is such an instance, it updates the new_position pointer to point to this node and returns 0; if there is no such node, then if there is a node before where the item would have been, it updates the new_position pointer to point to this node and returns -1; if there is no such node, then if there is a node after where the item would have been, it updates the new_position pointer to point to this node (or 0 if there is no such node) and returns 1;
.SS template<classT> void ACE_Ordered_MultiSet<T>::operator= (const ACE_Ordered_MultiSet< T >&)
.PP
Assignment operator.
.PP
.SS template<classT> int ACE_Ordered_MultiSet<T>::remove (const T & item)
.PP
Remove first occurrence of <item> from the set. Returns 0 if it removes the item, -1 if it can't find the item.
.PP
.SS template<classT> void ACE_Ordered_MultiSet<T>::reset (void)
.PP
Reset the to be empty.
.PP
.SS template<classT> size_t ACE_Ordered_MultiSet<T>::size (void) const
.PP
Size of the set.
.PP
.SH FRIENDS AND RELATED FUNCTION DOCUMENTATION
.PP
.SS template<classT> class \fBACE_Ordered_MultiSet_Iterator\fR\fC [friend]\fR
.PP
.SH MEMBER DATA DOCUMENTATION
.PP
.SS template<classT> ACE_Ordered_MultiSet<T>::ACE_ALLOC_HOOK_DECLARE
.PP
Declare the dynamic allocation hooks.
.PP
.SS template<classT> \fBACE_Allocator\fR * ACE_Ordered_MultiSet<T>::allocator_\fC [private]\fR
.PP
Allocation strategy of the set.
.PP
.SS template<classT> size_t ACE_Ordered_MultiSet<T>::cur_size_\fC [private]\fR
.PP
Current size of the set.
.PP
.SS template<classT> \fBACE_DNode\fR< T >* ACE_Ordered_MultiSet<T>::head_\fC [private]\fR
.PP
Head of the bilinked list of Nodes.
.PP
.SS template<classT> \fBACE_DNode\fR< T >* ACE_Ordered_MultiSet<T>::tail_\fC [private]\fR
.PP
Head of the bilinked list of Nodes.
.PP
.SH AUTHOR
.PP
Generated automatically by Doxygen for ACE from the source code.
|