1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
.TH ACE_Unbounded_Stack 3 "1 Dec 2001" "ACE" \" -*- nroff -*-
.ad l
.nh
.SH NAME
ACE_Unbounded_Stack \- Implement a generic LIFO abstract data type.
.SH SYNOPSIS
.br
.PP
\fC#include <Containers_T.h>\fR
.PP
.SS Public Types
.in +1c
.ti -1c
.RI "typedef \fBACE_Unbounded_Stack_Iterator\fR<T> \fBITERATOR\fR"
.br
.in -1c
.SS Public Methods
.in +1c
.ti -1c
.RI "\fBACE_Unbounded_Stack\fR (\fBACE_Allocator\fR *alloc = 0)"
.br
.RI "\fIInitialize a new stack so that it is empty. Use user defined allocation strategy if specified.\fR"
.ti -1c
.RI "\fBACE_Unbounded_Stack\fR (const ACE_Unbounded_Stack<T> &s)"
.br
.RI "\fIThe copy constructor (performs initialization).\fR"
.ti -1c
.RI "void \fBoperator=\fR (const ACE_Unbounded_Stack<T> &s)"
.br
.RI "\fIAssignment operator(performs assignment).\fR"
.ti -1c
.RI "\fB~ACE_Unbounded_Stack\fR (void)"
.br
.RI "\fIPerform actions needed when stack goes out of scope.\fR"
.ti -1c
.RI "int \fBpush\fR (const T &new_item)"
.br
.ti -1c
.RI "int \fBpop\fR (T &item)"
.br
.ti -1c
.RI "int \fBtop\fR (T &item) const"
.br
.ti -1c
.RI "int \fBis_empty\fR (void) const"
.br
.RI "\fIReturns 1 if the container is empty, otherwise returns 0.\fR"
.ti -1c
.RI "int \fBis_full\fR (void) const"
.br
.RI "\fIReturns 1 if the container is full, otherwise returns 0.\fR"
.ti -1c
.RI "int \fBinsert\fR (const T &new_item)"
.br
.ti -1c
.RI "int \fBremove\fR (const T &item)"
.br
.RI "\fIRemove <item> from the Stack. Returns 0 if it removes the item, -1 if it can't find the item, and -1 if a failure occurs.\fR"
.ti -1c
.RI "int \fBfind\fR (const T &item) const"
.br
.RI "\fIFinds if <item> occurs the set. Returns 0 if finds, else -1.\fR"
.ti -1c
.RI "size_t \fBsize\fR (void) const"
.br
.RI "\fIThe number of items in the stack.\fR"
.ti -1c
.RI "void \fBdump\fR (void) const"
.br
.RI "\fIDump the state of an object.\fR"
.in -1c
.SS Public Attributes
.in +1c
.ti -1c
.RI "\fBACE_ALLOC_HOOK_DECLARE\fR"
.br
.RI "\fIDeclare the dynamic allocation hooks.\fR"
.in -1c
.SS Private Methods
.in +1c
.ti -1c
.RI "void \fBdelete_all_nodes\fR (void)"
.br
.RI "\fIDelete all the nodes in the stack.\fR"
.ti -1c
.RI "void \fBcopy_all_nodes\fR (const ACE_Unbounded_Stack<T> &s)"
.br
.RI "\fICopy all nodes from <s> to <this>.\fR"
.in -1c
.SS Private Attributes
.in +1c
.ti -1c
.RI "\fBACE_Node\fR<T>* \fBhead_\fR"
.br
.RI "\fIHead of the linked list of Nodes.\fR"
.ti -1c
.RI "size_t \fBcur_size_\fR"
.br
.RI "\fICurrent size of the stack.\fR"
.ti -1c
.RI "\fBACE_Allocator\fR* \fBallocator_\fR"
.br
.RI "\fIAllocation strategy of the stack.\fR"
.in -1c
.SS Friends
.in +1c
.ti -1c
.RI "class \fBACE_Unbounded_Stack_Iterator< T >\fR"
.br
.in -1c
.SH DETAILED DESCRIPTION
.PP
.SS template<class T> template class ACE_Unbounded_Stack
Implement a generic LIFO abstract data type.
.PP
.PP
This implementation of an unbounded Stack uses a linked list. If you use the <insert> or <remove> methods you should keep in mind that duplicate entries aren't allowed. In general, therefore, you should avoid the use of these methods since they aren't really part of the ADT stack.
.PP
.SH MEMBER TYPEDEF DOCUMENTATION
.PP
.SS template<classT> typedef \fBACE_Unbounded_Stack_Iterator\fR<T> ACE_Unbounded_Stack<T>::ITERATOR
.PP
.SH CONSTRUCTOR & DESTRUCTOR DOCUMENTATION
.PP
.SS template<classT> ACE_Unbounded_Stack<T>::ACE_Unbounded_Stack<T> (\fBACE_Allocator\fR * alloc = 0)
.PP
Initialize a new stack so that it is empty. Use user defined allocation strategy if specified.
.PP
.SS template<classT> ACE_Unbounded_Stack<T>::ACE_Unbounded_Stack<T> (const ACE_Unbounded_Stack< T >& s)
.PP
The copy constructor (performs initialization).
.PP
.SS template<classT> ACE_Unbounded_Stack<T>::~ACE_Unbounded_Stack<T> (void)
.PP
Perform actions needed when stack goes out of scope.
.PP
.SH MEMBER FUNCTION DOCUMENTATION
.PP
.SS template<classT> void ACE_Unbounded_Stack<T>::copy_all_nodes (const ACE_Unbounded_Stack< T >& s)\fC [private]\fR
.PP
Copy all nodes from <s> to <this>.
.PP
.SS template<classT> void ACE_Unbounded_Stack<T>::delete_all_nodes (void)\fC [private]\fR
.PP
Delete all the nodes in the stack.
.PP
.SS template<classT> void ACE_Unbounded_Stack<T>::dump (void) const
.PP
Dump the state of an object.
.PP
.SS template<classT> int ACE_Unbounded_Stack<T>::find (const T & item) const
.PP
Finds if <item> occurs the set. Returns 0 if finds, else -1.
.PP
.SS template<classT> int ACE_Unbounded_Stack<T>::insert (const T & new_item)
.PP
Insert <new_item> into the Stack at the head (but doesn't allow duplicates). Returns -1 if failures occur, 1 if item is already present (i.e., no duplicates are allowed), else 0.
.SS template<classT> int ACE_Unbounded_Stack<T>::is_empty (void) const
.PP
Returns 1 if the container is empty, otherwise returns 0.
.PP
.SS template<classT> int ACE_Unbounded_Stack<T>::is_full (void) const
.PP
Returns 1 if the container is full, otherwise returns 0.
.PP
.SS template<classT> void ACE_Unbounded_Stack<T>::operator= (const ACE_Unbounded_Stack< T >& s)
.PP
Assignment operator(performs assignment).
.PP
.SS template<classT> int ACE_Unbounded_Stack<T>::pop (T & item)
.PP
Remove and return the top stack item. Returns -1 if the stack is already empty, 0 if the stack is not already empty, and -1 if failure occurs.
.SS template<classT> int ACE_Unbounded_Stack<T>::push (const T & new_item)
.PP
Place a new item on top of the stack. Returns -1 if the stack is already full, 0 if the stack is not already full, and -1 if failure occurs.
.SS template<classT> int ACE_Unbounded_Stack<T>::remove (const T & item)
.PP
Remove <item> from the Stack. Returns 0 if it removes the item, -1 if it can't find the item, and -1 if a failure occurs.
.PP
.SS template<classT> size_t ACE_Unbounded_Stack<T>::size (void) const
.PP
The number of items in the stack.
.PP
.SS template<classT> int ACE_Unbounded_Stack<T>::top (T & item) const
.PP
Return top stack item without removing it. Returns -1 if the stack is already empty, 0 if the stack is not already empty, and -1 if failure occurs.
.SH FRIENDS AND RELATED FUNCTION DOCUMENTATION
.PP
.SS template<classT> class \fBACE_Unbounded_Stack_Iterator\fR\fC [friend]\fR
.PP
.SH MEMBER DATA DOCUMENTATION
.PP
.SS template<classT> ACE_Unbounded_Stack<T>::ACE_ALLOC_HOOK_DECLARE
.PP
Declare the dynamic allocation hooks.
.PP
.SS template<classT> \fBACE_Allocator\fR * ACE_Unbounded_Stack<T>::allocator_\fC [private]\fR
.PP
Allocation strategy of the stack.
.PP
.SS template<classT> size_t ACE_Unbounded_Stack<T>::cur_size_\fC [private]\fR
.PP
Current size of the stack.
.PP
.SS template<classT> \fBACE_Node\fR< T >* ACE_Unbounded_Stack<T>::head_\fC [private]\fR
.PP
Head of the linked list of Nodes.
.PP
.SH AUTHOR
.PP
Generated automatically by Doxygen for ACE from the source code.
|