1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
// $Id: priority_buffer.cpp 91671 2010-09-08 18:39:23Z johnnyw $
// This short program prints the contents of stdin to stdout sorted by
// the length of each line via the use of an ASX Message_Queue. It
// illustrates how priorities can be used for ACE Message_Queues.
#include "ace/OS_NS_stdio.h"
#include "ace/Malloc_Base.h" // To get ACE_Allocator
#include "ace/Message_Queue.h"
#include "ace/Read_Buffer.h"
#include "ace/Thread_Manager.h"
#include "ace/Service_Config.h"
#include "ace/Truncate.h"
#if defined (ACE_HAS_THREADS)
// Global thread manager.
static ACE_Thread_Manager thr_mgr;
// Make the queue be capable of being *very* large.
static const long max_queue = LONG_MAX;
// The consumer dequeues a message from the ACE_Message_Queue, writes
// the message to the stderr stream, and deletes the message. The
// producer sends a 0-sized message to inform the consumer to stop
// reading and exit.
static void *
consumer (ACE_Message_Queue<ACE_MT_SYNCH> *msg_queue)
{
// Keep looping, reading a message out of the queue, until we
// timeout or get a message with a length == 0, which signals us to
// quit.
for (;;)
{
ACE_Message_Block *mb = 0;
if (msg_queue->dequeue_head (mb) == -1)
break;
int length = ACE_Utils::truncate_cast<int> (mb->length ());
if (length > 0)
ACE_OS::puts (mb->rd_ptr ());
// Free up the buffer memory and the Message_Block.
ACE_Allocator::instance ()->free (mb->rd_ptr ());
mb->release ();
if (length == 0)
break;
}
return 0;
}
// The producer reads data from the stdin stream, creates a message,
// and then queues the message in the message list, where it is
// removed by the consumer thread. A 0-sized message is enqueued when
// there is no more data to read. The consumer uses this as a flag to
// know when to exit.
static void *
producer (ACE_Message_Queue<ACE_MT_SYNCH> *msg_queue)
{
ACE_Read_Buffer rb (ACE_STDIN);
// Keep reading stdin, until we reach EOF.
for (;;)
{
// Allocate a new buffer.
char *buffer = rb.read ('\n');
ACE_Message_Block *mb = 0;
if (buffer == 0)
{
// Send a 0-sized shutdown message to the other thread and
// exit.
ACE_NEW_RETURN (mb, ACE_Message_Block ((size_t) 0), 0);
if (msg_queue->enqueue_tail (mb) == -1)
ACE_ERROR ((LM_ERROR, "(%t) %p\n", "put_next"));
break;
}
// Enqueue the message in priority order.
else
{
// Allocate a new message, but have it "borrow" its memory
// from the buffer.
ACE_NEW_RETURN (mb,
ACE_Message_Block (rb.size (),
ACE_Message_Block::MB_DATA,
0,
buffer),
0);
mb->msg_priority (ACE_Utils::truncate_cast<unsigned long> (rb.size ()));
mb->wr_ptr (rb.size ());
ACE_DEBUG ((LM_DEBUG,
"enqueueing message of size %d\n",
mb->msg_priority ()));
// Enqueue in priority order.
if (msg_queue->enqueue_prio (mb) == -1)
ACE_ERROR ((LM_ERROR, "(%t) %p\n", "put_next"));
}
}
// Now read all the items out in priority order (i.e., ordered by
// the size of the lines!).
consumer (msg_queue);
return 0;
}
// Spawn off one thread that copies stdin to stdout in order of the
// size of each line.
int
ACE_TMAIN (int, ACE_TCHAR *[])
{
// Message queue.
ACE_Message_Queue<ACE_MT_SYNCH> msg_queue (max_queue);
if (thr_mgr.spawn (ACE_THR_FUNC (producer), (void *) &msg_queue,
THR_NEW_LWP | THR_DETACHED) == -1)
ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "spawn"), 1);
// Wait for producer and consumer threads to exit.
thr_mgr.wait ();
return 0;
}
#else
int
ACE_TMAIN (int, ACE_TCHAR *[])
{
ACE_ERROR ((LM_ERROR, "threads not supported on this platform\n"));
return 0;
}
#endif /* ACE_HAS_THREADS */
|