1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
// $Id: test_demuxing.cpp 91671 2010-09-08 18:39:23Z johnnyw $
// Perform an extensive test of all the ACE_Reactor's event handler
// dispatching mechanisms. These mechanisms illustrate how I/O,
// timeout, and signal events, as well as ACE_Message_Queues, can all
// be handled within the same demultiplexing and dispatching
// framework. In addition, this example illustrates how to use the
// ACE_Reactor for devices that perform I/O via signals (such as SVR4
// message queues).
#include "ace/ACE.h"
#include "ace/Service_Config.h"
#include "ace/Reactor.h"
#include "ace/Task.h"
#include "ace/Reactor_Notification_Strategy.h"
#include "ace/Signal.h"
#include "ace/OS_NS_fcntl.h"
#include "ace/OS_NS_unistd.h"
// Default is to have a 2 second timeout.
static int timeout = 2;
class Sig_Handler : public ACE_Event_Handler
{
// = TITLE
// This class illustrates how to handle signal-driven I/O using
// the <ACE_Reactor> framework. Note that signals may be caught
// and processed without requiring the use of global signal
// handler functions or global signal handler data.
public:
Sig_Handler (void);
virtual ACE_HANDLE get_handle (void) const;
virtual int handle_input (ACE_HANDLE);
//FUZZ: disable check_for_lack_ACE_OS
virtual int shutdown (ACE_HANDLE, ACE_Reactor_Mask);
//FUZZ: enable check_for_lack_ACE_OS
virtual int handle_signal (int signum, siginfo_t * = 0,
ucontext_t * = 0);
private:
ACE_HANDLE handle_;
};
// A dummy_handle is required to reserve a slot in the ACE_Reactor's
// descriptor table.
Sig_Handler::Sig_Handler (void)
{
// Assign the Sig_Handler a dummy I/O descriptor. Note that even
// though we open this file "Write Only" we still need to use the
// ACE_Event_Handler::NULL_MASK when registering this with the
// ACE_Reactor (see below).
this->handle_ = ACE_OS::open (ACE_DEV_NULL, O_WRONLY);
ACE_ASSERT (this->handle_ != ACE_INVALID_HANDLE);
// Register signal handler object. Note that NULL_MASK is used to
// keep the ACE_Reactor from calling us back on the "/dev/null"
// descriptor. NULL_MASK just reserves a "slot" in the Reactor's
// internal demuxing table, but doesn't cause it to dispatch the
// event handler directly. Instead, we use the signal handler to do
// this.
ACE_Reactor_Mask mask = ACE_Event_Handler::NULL_MASK;
if (ACE_Reactor::instance ()->register_handler (this, mask) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n%a",
"register_handler",
1));
// Create a sigset_t corresponding to the signals we want to catch.
ACE_Sig_Set sig_set;
sig_set.sig_add (SIGINT);
sig_set.sig_add (SIGQUIT);
sig_set.sig_add (SIGALRM);
// Register the signal handler object to catch the signals.
if (ACE_Reactor::instance ()->register_handler
(sig_set, this) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n%a",
"register_handler",
1));
}
// Called by the ACE_Reactor to extract the handle.
ACE_HANDLE
Sig_Handler::get_handle (void) const
{
return this->handle_;
}
// In a real application, this method would be where the read on the
// signal-driven I/O device would occur asynchronously. For now we'll
// just print a greeting to let you know that everything is working
// properly!
int
Sig_Handler::handle_input (ACE_HANDLE)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) handling asynchonrous input...\n"));
return 0;
}
// In a real application, this method would do any cleanup activities
// required when shutting down the I/O device.
int
Sig_Handler::shutdown (ACE_HANDLE, ACE_Reactor_Mask)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) closing down Sig_Handler...\n"));
return 0;
}
// This method handles all the signals that are being caught by this
// object. In our simple example, we are simply catching SIGALRM,
// SIGINT, and SIGQUIT. Anything else is logged and ignored. Note
// that the ACE_Reactor's signal handling mechanism eliminates the
// need to use global signal handler functions and data.
int
Sig_Handler::handle_signal (int signum, siginfo_t *, ucontext_t *)
{
switch (signum)
{
#if !defined (ACE_WIN32)
case SIGALRM:
// Rearm the alarm.
ACE_OS::alarm (4);
break;
#endif /* !ACE_WIN32 */
case SIGINT:
// Tell the ACE_Reactor to enable the ready bit for
// this->handle_. The ACE_Reactor will subsequently call the
// <Sig_Handler::handle_input> method from within its event
// loop, i.e., the behavior triggered by the signal is handled
// in the main event loop, rather than in the signal handler.
return ACE_Reactor::instance ()->ready_ops
(this->handle_,
ACE_Event_Handler::READ_MASK,
ACE_Reactor::ADD_MASK);
#if defined (SIGTERM) && (SIGTERM != 0)
case SIGTERM:
// This is coded thusly to avoid problems if SIGQUIT is a legit
// value but is not a preprocessor macro.
#elif !defined (SIGQUIT) || (SIGQUIT != 0)
case SIGQUIT:
#endif /* SIGTERM != 0 */
ACE_Reactor::end_event_loop ();
break;
default:
ACE_ERROR_RETURN ((LM_ERROR, "invalid signal"), -1);
/* NOTREACHED */
}
return 0;
}
class STDIN_Handler : public ACE_Event_Handler
{
// = TITLE
// This class illustrates that the ACE_Reactor can handle signals,
// STDIO, and timeouts using the same mechanisms.
public:
STDIN_Handler (void);
~STDIN_Handler (void);
virtual int handle_input (ACE_HANDLE);
virtual int handle_timeout (const ACE_Time_Value &,
const void *arg);
};
STDIN_Handler::STDIN_Handler (void)
{
if (ACE_Event_Handler::register_stdin_handler (this,
ACE_Reactor::instance (),
ACE_Thread_Manager::instance ()) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n",
"register_stdin_handler"));
// Register the <STDIN_Handler> to be dispatched once every
// <timeout> seconds starting in <timeout> seconds. This example
// uses the "interval timer" feature of the <ACE_Reactor>'s timer
// queue.
else if (ACE_Reactor::instance ()->schedule_timer
(this,
0,
ACE_Time_Value (timeout),
ACE_Time_Value (timeout)) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n%a",
"schedule_timer",
1));
}
STDIN_Handler::~STDIN_Handler (void)
{
if (ACE_Event_Handler::remove_stdin_handler (ACE_Reactor::instance (),
ACE_Thread_Manager::instance ()) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n",
"remove_stdin_handler"));
else if (ACE_Reactor::instance ()->cancel_timer
(this) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n%a",
"cancel_timer",
1));
}
int
STDIN_Handler::handle_timeout (const ACE_Time_Value &tv,
const void *)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) timeout occurred at %d sec, %d usec\n",
tv.sec (),
tv.usec ()));
return 0;
}
// Read from input handle and write to stdout handle.
int
STDIN_Handler::handle_input (ACE_HANDLE handle)
{
char buf[BUFSIZ];
ssize_t n = ACE_OS::read (handle, buf, sizeof buf);
switch (n)
{
case -1:
if (errno == EINTR)
return 0;
/* NOTREACHED */
else
ACE_ERROR ((LM_ERROR,
"%p\n",
"read"));
/* FALLTHROUGH */
case 0:
ACE_Reactor::end_event_loop ();
break;
default:
{
ssize_t result = ACE::write_n (ACE_STDOUT, buf, n);
if (result != n)
ACE_ERROR_RETURN ((LM_ERROR,
"%p\n",
"write"),
result == -1 && errno == EINTR ? 0 : -1);
}
}
return 0;
}
class Message_Handler : public ACE_Task <ACE_SYNCH>
{
public:
Message_Handler (void);
virtual int handle_input (ACE_HANDLE);
// Called back within the context of the <ACE_Reactor> Singleton to
// dequeue and process the message on the <ACE_Message_Queue>.
virtual int svc (void);
// Run the "event-loop" periodically putting messages to our
// internal <Message_Queue> that we inherit from <ACE_Task>.
private:
ACE_Reactor_Notification_Strategy notification_strategy_;
// This strategy will notify the <ACE_Reactor> Singleton when a new
// message is enqueued.
};
Message_Handler::Message_Handler (void)
: notification_strategy_ (ACE_Reactor::instance (),
this,
ACE_Event_Handler::READ_MASK)
{
// Set this to the Reactor notification strategy.
this->msg_queue ()->notification_strategy (&this->notification_strategy_);
if (this->activate ())
ACE_ERROR ((LM_ERROR,
"%p\n",
"activate"));
}
int
Message_Handler::svc (void)
{
for (int i = 0;; i++)
{
ACE_Message_Block *mb = 0;
ACE_NEW_RETURN (mb,
ACE_Message_Block (1),
0);
mb->msg_priority (i);
ACE_OS::sleep (1);
// Note that this putq() call with automagically invoke the
// notify() hook of our ACE_Reactor_Notification_Strategy,
// thereby informing the <ACE_Reactor> Singleton to call our
// <handle_input> method.
if (this->putq (mb) == -1)
{
if (errno == ESHUTDOWN)
ACE_ERROR_RETURN ((LM_ERROR,
"(%t) queue is deactivated"), 0);
else
ACE_ERROR_RETURN ((LM_ERROR,
"(%t) %p\n",
"putq"),
-1);
}
}
ACE_NOTREACHED (return 0);
}
int
Message_Handler::handle_input (ACE_HANDLE)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) Message_Handler::handle_input\n"));
ACE_Message_Block *mb = 0;
if (this->getq (mb, (ACE_Time_Value *) &ACE_Time_Value::zero) == -1)
ACE_ERROR ((LM_ERROR,
"(%t) %p\n",
"dequeue_head"));
else
{
ACE_DEBUG ((LM_DEBUG,
"(%t) priority = %d\n",
mb->msg_priority ()));
mb->release ();
}
return 0;
}
int
ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{
ACE_Service_Config daemon (argv [0]);
// Optionally start the alarm.
if (argc > 1)
{
ACE_OS::alarm (4);
timeout = ACE_OS::atoi (argv[1]);
}
// Signal handler.
Sig_Handler sh;
// Define an I/O handler object.
STDIN_Handler ioh;
// Define a message handler.
Message_Handler mh;
// Loop handling signals and I/O events until SIGQUIT occurs.
while (ACE_Reactor::instance ()->event_loop_done () == 0)
ACE_Reactor::instance ()->run_reactor_event_loop ();
// Deactivate the message queue.
mh.msg_queue ()->deactivate ();
// Wait for the thread to exit.
ACE_Thread_Manager::instance ()->wait ();
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%t) leaving main\n")));
return 0;
}
|