1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
// $Id: auto_event.cpp 91670 2010-09-08 18:02:26Z johnnyw $
// This test shows the use of an ACE_Auto_Event as a signaling
// mechanism. Two threads are created (one a reader, the other a
// writer). The reader waits till the writer has completed
// calculations. Upon waking up the reader prints the data calculated
// by the writer. The writer thread calculates the value and signals
// the reader when the calculation completes.
#include "ace/OS_NS_unistd.h"
#include "ace/OS_main.h"
#include "ace/Service_Config.h"
#include "ace/Auto_Event.h"
#include "ace/Singleton.h"
#include "ace/Thread_Manager.h"
#if defined (ACE_HAS_THREADS)
// Shared event between reader and writer. The ACE_Thread_Mutex is
// necessary to make sure that only one ACE_Auto_Event is created.
// The default constructor for ACE_Auto_Event sets it initially into
// the non-signaled state.
typedef ACE_Singleton <ACE_Auto_Event, ACE_Thread_Mutex> EVENT;
// work time for writer
static int work_time;
// Reader thread.
static void *
reader (void *arg)
{
// Shared data via a reference.
int& data = *(int *) arg;
// Wait for writer to complete.
ACE_DEBUG ((LM_DEBUG, "(%t) reader: waiting......\n"));
if (EVENT::instance ()->wait () == -1)
{
ACE_ERROR ((LM_ERROR, "thread wait failed"));
ACE_OS::exit (0);
}
// Read shared data.
ACE_DEBUG ((LM_DEBUG, "(%t) reader: value of data is: %d\n", data));
return 0;
}
// Writer thread.
static void *
writer (void *arg)
{
int& data = *(int *) arg;
// Calculate (work).
ACE_DEBUG ((LM_DEBUG, "(%t) writer: working for %d secs\n", work_time));
ACE_OS::sleep (work_time);
// Write shared data.
data = 42;
// Wake up reader.
ACE_DEBUG ((LM_DEBUG, "(%t) writer: calculation complete, waking reader\n"));
if (EVENT::instance ()->signal () == -1)
{
ACE_ERROR ((LM_ERROR, "thread signal failed"));
ACE_OS::exit (0);
}
return 0;
}
int
ACE_TMAIN (int argc, ACE_TCHAR **argv)
{
// Shared data: set by writer, read by reader.
int data;
// Work time for writer.
work_time = argc == 2 ? ACE_OS::atoi (argv[1]) : 5;
// threads manager
ACE_Thread_Manager& tm = *ACE_Thread_Manager::instance ();
// Create reader thread.
if (tm.spawn ((ACE_THR_FUNC) reader, (void *) &data) == -1)
ACE_ERROR_RETURN ((LM_ERROR, "thread create for reader failed"), -1);
// Create writer thread.
if (tm.spawn ((ACE_THR_FUNC) writer, (void *) &data) == -1)
ACE_ERROR_RETURN ((LM_ERROR, "thread create for writer failed"), -1);
// Wait for both.
if (tm.wait () == -1)
ACE_ERROR_RETURN ((LM_ERROR, "thread wait failed"), -1);
else
ACE_DEBUG ((LM_ERROR, "graceful exit\n"));
return 0;
}
#if defined (ACE_HAS_EXPLICIT_STATIC_TEMPLATE_MEMBER_INSTANTIATION)
template ACE_Singleton<ACE_Auto_Event, ACE_Thread_Mutex> *
ACE_Singleton<ACE_Auto_Event, ACE_Thread_Mutex>::singleton_;
#endif /* ACE_HAS_EXPLICIT_STATIC_TEMPLATE_MEMBER_INSTANTIATION */
#else
int
ACE_TMAIN (int, ACE_TCHAR *[])
{
ACE_ERROR ((LM_ERROR, "threads not supported on this platform\n"));
return 0;
}
#endif /* ACE_HAS_THREADS */
|