1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
// $Id: barrier2.cpp 91671 2010-09-08 18:39:23Z johnnyw $
// This test program illustrates how the ACE task workers/barrier
// synchronization mechanisms work in conjunction with the ACE_Task
// and the ACE_Thread_Manager. The manual flag not set simulates user
// input, if set input comes from stdin until RETURN only is entered
// which stops all workers via a message block of length 0. This is an
// alernative shutdown of workers compared to queue deactivate. The
// delay_put flag simulates a delay between the shutdown puts. All
// should work with this flag disabled! The BARRIER_TYPE is supposed
// to enable/disable barrier sync on each svc a worker has done.
#include "ace/OS_NS_string.h"
#include "ace/OS_NS_unistd.h"
#include "ace/OS_main.h"
#include "ace/Task.h"
#include "ace/Service_Config.h"
#if defined (ACE_HAS_THREADS)
#include "ace/Null_Barrier.h"
#define BARRIER_TYPE ACE_Null_Barrier
template <class BARRIER>
class Worker_Task : public ACE_Task<ACE_MT_SYNCH>
{
public:
Worker_Task (ACE_Thread_Manager *thr_mgr,
int n_threads,
int inp_serialize = 1);
virtual int producer (void);
// produce input for workers
virtual int input (ACE_Message_Block *mb);
// Fill one message block via a certain input strategy.
virtual int output (ACE_Message_Block *mb);
// Forward one message block via a certain output strategy to the
// next task if any.
virtual int service (ACE_Message_Block *mb, int iter);
// Perform one message block dependant service.
private:
virtual int put (ACE_Message_Block *mb, ACE_Time_Value *tv=0);
virtual int svc (void);
// Iterate <n_iterations> time printing off a message and "waiting"
// for all other threads to complete this iteration.
//FUZZ: disable check_for_lack_ACE_OS
// = Not needed for this test.
virtual int open (void *) { return 0; }
virtual int close (u_long)
{
//FUZZ: enable check_for_lack_ACE_OS
ACE_DEBUG ((LM_DEBUG,
"(%t) in close of worker\n"));
return 0;
}
int nt_;
// Number of worker threads to run.
int inp_serialize_;
BARRIER barrier_;
};
template <class BARRIER>
Worker_Task<BARRIER>::Worker_Task (ACE_Thread_Manager *thr_mgr,
int n_threads,
int inp_serialize)
: ACE_Task<ACE_MT_SYNCH> (thr_mgr),
barrier_ (n_threads)
{
nt_ = n_threads;
// Create worker threads.
inp_serialize_ = inp_serialize;
// Use the task's message queue for serialization (default) or run
// service in the context of the caller thread.
if (nt_ > 0 && inp_serialize == 1)
if (this->activate (THR_NEW_LWP, n_threads) == -1)
ACE_ERROR ((LM_ERROR,
"%p\n",
"activate failed"));
}
// Simply enqueue the Message_Block into the end of the queue.
template <class BARRIER> int
Worker_Task<BARRIER>::put (ACE_Message_Block *mb,
ACE_Time_Value *tv)
{
int result;
if (this->inp_serialize_)
result = this->putq (mb, tv);
else
{
static int iter = 0;
result = this->service (mb, iter++);
if (this->output (mb) < 0)
ACE_DEBUG ((LM_DEBUG,
"(%t) output not connected!\n"));
mb->release ();
}
return result;
}
template <class BARRIER> int
Worker_Task<BARRIER>::service (ACE_Message_Block *mb,
int iter)
{
size_t length = mb->length ();
if (length > 0)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) in iteration %d len=%d text got:\n",
iter,
length));
ACE_OS::write (ACE_STDOUT,
mb->rd_ptr (),
length);
ACE_DEBUG ((LM_DEBUG,
"\n"));
}
return 0;
}
// Iterate <n_iterations> time printing off a message and "waiting"
// for all other threads to complete this iteration.
template <class BARRIER> int
Worker_Task<BARRIER>::svc (void)
{
// Note that the <ACE_Task::svc_run> method automatically adds us to
// the Thread_Manager when the thread begins.
// Keep looping, reading a message out of the queue, until we get a
// message with a length == 0, which signals us to quit.
for (int iter = 1; ;iter++)
{
ACE_Message_Block *mb = 0;
int result = this->getq (mb);
if (result == -1)
{
ACE_ERROR ((LM_ERROR,
"(%t) in iteration %d\n",
"error waiting for message in iteration",
iter));
break;
}
size_t length = mb->length ();
this->service (mb,iter);
if (length == 0)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) in iteration %d got quit, exit!\n",
iter));
mb->release ();
break;
}
this->barrier_.wait ();
this->output (mb);
mb->release ();
}
// Note that the <ACE_Task::svc_run> method automatically removes us
// from the Thread_Manager when the thread exits.
return 0;
}
template <class BARRIER> int
Worker_Task<BARRIER>::producer (void)
{
// Keep reading stdin, until we reach EOF.
for (;;)
{
// Allocate a new message.
ACE_Message_Block *mb = 0;
ACE_NEW_RETURN (mb,
ACE_Message_Block (BUFSIZ),
-1);
if (this->input (mb) == -1)
return -1;
}
ACE_NOTREACHED (return 0);
}
template <class BARRIER> int
Worker_Task<BARRIER>::output (ACE_Message_Block *mb)
{
return this->put_next (mb);
}
template <class BARRIER> int
Worker_Task<BARRIER>::input (ACE_Message_Block *mb)
{
ACE_Message_Block *mb1;
#if !defined (manual)
static int l = 0;
char str[] = "kalle";
ACE_OS::strcpy (mb->rd_ptr (), str);
size_t n = ACE_OS::strlen (str);
if (l == 1000)
n = 1;
l++;
if (l == 0 || (l % 100 == 0))
ACE_OS::sleep (5);
if (n <= 1)
#else
ACE_DEBUG ((LM_DEBUG,
"(%t) press chars and enter to put a new message into task queue ...\n"));
n = ACE_OS::read (ACE_STDIN,
mb->rd_ptr (),
mb->size ());
if (n <= 1)
#endif /* manual */
{
// Send a shutdown message to the waiting threads and exit.
// cout << "\nvor loop, dump of task msg queue:\n" << endl;
// this->msg_queue ()->dump ();
for (int i = 0; i < nt_; i++)
{
ACE_DEBUG ((LM_DEBUG,
"(%t) eof, sending block for thread=%d\n",
i + 1));
ACE_NEW_RETURN (mb1,
ACE_Message_Block (2),
-1);
mb1->length (0);
if (this->put (mb1) == -1)
ACE_ERROR ((LM_ERROR,
"(%t) %p\n",
"put"));
#if defined (delay_put)
// this sleep helps to shutdown correctly -> was an error!
ACE_OS::sleep (1);
#endif /* delay_put */
}
return -1;
}
else
{
// Send a normal message to the waiting threads and continue
// producing.
mb->wr_ptr (n);
if (this->put (mb) == -1)
ACE_ERROR ((LM_ERROR,
"(%t) %p\n",
"put"));
}
return 0;
}
int
ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{
int n_threads = argc > 1 ? ACE_OS::atoi (argv[1]) : ACE_DEFAULT_THREADS;
ACE_DEBUG ((LM_DEBUG,
"(%t) worker threads running=%d\n",
n_threads));
Worker_Task<BARRIER_TYPE> worker_task (ACE_Thread_Manager::instance (),
/* n_threads */ 0,
0);
worker_task.producer ();
// Wait for all the threads to reach their exit point.
ACE_DEBUG ((LM_DEBUG,
"(%t) waiting with thread manager ...\n"));
ACE_Thread_Manager::instance ()->wait ();
ACE_DEBUG ((LM_DEBUG,
"(%t) done correct!\n"));
return 0;
}
#else
int
ACE_TMAIN (int, ACE_TCHAR *[])
{
ACE_ERROR ((LM_ERROR, "threads not supported on this platform\n"));
return 0;
}
#endif /* ACE_HAS_THREADS */
|