1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
//=============================================================================
/**
* @file Buffer_Stream_Test.cpp
*
* $Id: Buffer_Stream_Test.cpp 93638 2011-03-24 13:16:05Z johnnyw $
*
* This program illustrates an implementation of the classic
* "bounded buffer" program using an ASX STREAM containing two
* Modules. Each ACE_Module contains two Tasks. Each ACE_Task
* contains a ACE_Message_Queue and a pointer to a
* ACE_Thread_Manager. Note how the use of these reusable
* components reduces the reliance on global variables.
*
*
* @author Prashant Jain <pjain@cs.wustl.edu> and Doug Schmidt <schmidt@cs.wustl.edu>
*/
//=============================================================================
#include "test_config.h"
#include "ace/Stream.h"
#include "ace/Module.h"
#include "ace/Task.h"
#include "ace/OS_NS_string.h"
#include "ace/OS_NS_time.h"
#if defined (ACE_HAS_THREADS)
static const char ACE_ALPHABET[] = "abcdefghijklmnopqrstuvwxyz";
typedef ACE_Stream<ACE_MT_SYNCH> MT_Stream;
typedef ACE_Module<ACE_MT_SYNCH> MT_Module;
typedef ACE_Task<ACE_MT_SYNCH> MT_Task;
/**
* @class Common_Task
*
* @brief Methods that are common to the Supplier and consumer.
*/
class Common_Task : public MT_Task
{
public:
Common_Task (void) {}
//FUZZ: disable check_for_lack_ACE_OS
// = ACE_Task hooks.
///FUZZ: enable check_for_lack_ACE_OS
virtual int open (void * = 0);
virtual int close (u_long = 0);
};
/**
* @class Supplier
*
* @brief Define the Supplier interface.
*/
class Supplier : public Common_Task
{
public:
Supplier (void) {}
/// Read data from stdin and pass to consumer.
virtual int svc (void);
};
/**
* @class Consumer
*
* @brief Define the Consumer interface.
*/
class Consumer : public Common_Task
{
public:
Consumer (void) {}
/// Enqueue the message on the ACE_Message_Queue for subsequent
/// handling in the svc() method.
virtual int put (ACE_Message_Block *mb, ACE_Time_Value *tv = 0);
/// Receive message from Supplier and print to stdout.
virtual int svc (void);
private:
/// Amount of time to wait for a timeout.
ACE_Time_Value timeout_;
};
// Spawn off a new thread.
int
Common_Task::open (void *)
{
if (this->activate (THR_NEW_LWP | THR_DETACHED) == -1)
ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("spawn")), -1);
return 0;
}
int
Common_Task::close (u_long exit_status)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%t) thread is exiting with status %d in module %s\n"),
exit_status,
this->name ()));
// Can do anything here that is required when a thread exits, e.g.,
// storing thread-specific information in some other storage
// location, etc.
return 0;
}
// The Supplier reads data from the stdin stream, creates a message,
// and then queues the message in the message list, where it is
// removed by the consumer thread. A 0-sized message is enqueued when
// there is no more data to read. The consumer uses this as a flag to
// know when to exit.
int
Supplier::svc (void)
{
ACE_Message_Block *mb = 0;
// Send one message for each letter of the alphabet, then send an empty
// message to mark the end.
for (const char *c = ACE_ALPHABET; *c != '\0'; c++)
{
// Allocate a new message.
char d[2];
d[0] = *c;
d[1] = '\0';
ACE_NEW_RETURN (mb,
ACE_Message_Block (2),
-1);
ACE_OS::strcpy (mb->wr_ptr (), d);
mb->wr_ptr (2);
if (this->put_next (mb) == -1)
ACE_ERROR ((LM_ERROR, ACE_TEXT ("(%t) %p\n"),
ACE_TEXT ("put_next")));
}
ACE_NEW_RETURN(mb, ACE_Message_Block, -1);
if (this->put_next (mb) == -1)
ACE_ERROR ((LM_ERROR, ACE_TEXT ("(%t) %p\n"), ACE_TEXT ("put_next")));
return 0;
}
int
Consumer::put (ACE_Message_Block *mb, ACE_Time_Value *tv)
{
// Simply enqueue the Message_Block into the end of the queue.
return this->putq (mb, tv);
}
// The consumer dequeues a message from the ACE_Message_Queue, writes
// the message to the stderr stream, and deletes the message. The
// Consumer sends a 0-sized message to inform the consumer to stop
// reading and exit.
int
Consumer::svc (void)
{
ACE_Message_Block *mb = 0;
int result;
const char *c = ACE_ALPHABET;
char *output = 0;
// Keep looping, reading a message out of the queue, until we
// timeout or get a message with a length == 0, which signals us to
// quit.
for (;;)
{
this->timeout_.set (ACE_OS::time (0) + 4, 0); // Wait for upto 4 seconds
result = this->getq (mb, &this->timeout_);
if (result == -1)
break;
size_t const length = mb->length ();
if (length > 0)
{
output = mb->rd_ptr ();
ACE_TEST_ASSERT (*c == output[0]);
c++;
}
mb->release ();
if (length == 0)
break;
}
ACE_TEST_ASSERT (result == 0 || errno == EWOULDBLOCK);
return 0;
}
#endif /* ACE_HAS_THREADS */
// Main driver function.
int
run_main (int, ACE_TCHAR *[])
{
ACE_START_TEST (ACE_TEXT ("Buffer_Stream_Test"));
#if defined (ACE_HAS_THREADS)
// Control hierachically-related active objects.
MT_Stream stream;
MT_Module *cm = 0;
MT_Module *sm = 0;
// Allocate the Consumer and Supplier modules.
ACE_NEW_RETURN (cm, MT_Module (ACE_TEXT ("Consumer"), new Consumer), -1);
ACE_NEW_RETURN (sm, MT_Module (ACE_TEXT ("Supplier"), new Supplier), -1);
// Create Supplier and Consumer Modules and push them onto the
// Stream. All processing is performed in the Stream.
if (stream.push (cm) == -1)
ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("push")), 1);
else if (stream.push (sm) == -1)
ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("push")), 1);
// Barrier synchronization: wait for the threads to exit, then exit
// ourselves.
ACE_Thread_Manager::instance ()->wait ();
#else
ACE_ERROR ((LM_INFO,
ACE_TEXT ("threads not supported on this platform\n")));
#endif /* ACE_HAS_THREADS */
ACE_END_TEST;
return 0;
}
|