1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
|
//=============================================================================
/**
* @file Dynamic_Priority_Test.cpp (based on Priority_Buffer_Test.cpp)
*
* $Id: Dynamic_Priority_Test.cpp 93638 2011-03-24 13:16:05Z johnnyw $
*
* This is a test to verify and illustrate the static and dynamic
* priority mechanisms of the <ACE_Message_Queue> class and the
* <ACE_Dynamic_Message_Queue> class. As in the
* <Priority_Buffer_Test>, a producer generates messages and
* enqueues them, and a consumer dequeues them and checks their
* ordering.
*
* In these tests, every effort is made to ensure that there is
* plenty of time for the messages to be enqueued and dequeued,
* with messages that *should* meet their deadlines actually
* meeting them, while messages that should miss their deadlines
* are delayed so that they actually miss them. It is, however,
* remotely possible that this test could yield a false negative:
* the dynamic queues could work correctly but due to timing
* variations the test could indicate failure.
*
* Three message queues are obtained from the message queue
* factory, one static, two dynamic (one deadline based, and one
* laxity based) and the same supplier behavior is used each time:
* the messages are preallocated and their static information
* valued, the current time is obtained and deadlines are set, with
* half of the messages given late deadlines, and the other half of
* the messages given reachable deadlines. The producer then
* immediately enqueues all messages.
*
* Two separate tests are run, one which verifies messages are
* correctly ordered my the given queues, and one which generates
* performance numbers for the various queues under increasing
* numbers of messages. In the first test, the consumer is passed
* the filled queue and a string with the expected order in which
* the messages should dequeue. In the second test, measurements
* are made as non-intrusive as possible, with no ordering checks.
*
*
* @author Chris Gill <cdgill@cs.wustl.edu>
*/
//=============================================================================
#include "test_config.h" /* Include first to enable ACE_TEST_ASSERT. */
#include "ace/Message_Queue.h"
#include "ace/Thread_Manager.h"
#include "ace/High_Res_Timer.h"
#include "ace/Sched_Params.h"
#if defined (VXWORKS)
# include "ace/OS_NS_string.h"
#endif /* VXWORKS */
#if defined (ACE_HAS_TIMED_MESSAGE_BLOCKS)
enum Test_Type {BEST, WORST, RANDOM};
/**
* @class ArgStruct
*
* @brief Structure used to pass arguments to test functions.
*/
class ArgStruct
{
public:
/// message queue to test
ACE_Message_Queue<ACE_SYNCH> *queue_;
/// string of characters to indicate message order
const char *order_string_;
/// array of message blocks to use
ACE_Message_Block **array_;
/// expected message count
u_int expected_count_;
};
// Order in which messages are sent.
static const char send_order [] = "abcdefghijklmnop";
// Order in which messages are received with "FIFO prioritization"
// (i.e., none)
// Unused: static const char FIFO_receipt_order [] = "abcdefghijklmnop";
// Order in which messages are received with static prioritization.
static const char static_receipt_order [] = "ponmlkjihgfedcba";
// Order in which messages are received with deadline prioritization.
static const char deadline_receipt_order [] = "hgfedcbaponmlkji";
// Order in which messages are received with laxity prioritization.
static const char laxity_receipt_order [] = "hfgedbcapnomljki";
// Fast and slow execution time values (sec, usec), kept very small to
// allow comparison of deadline, laxity, and static strategies across
// a very wide range of message counts.
static const ACE_Time_Value fast_execution (0, 1);
static const ACE_Time_Value slow_execution (0, 2);
// Make the queue be capable of being *very* large.
static const long max_queue = LONG_MAX;
#if defined (VXWORKS)
// VxWorks Message Queue parameters.
const int vx_max_queue = INT_MAX;
const int vx_msg_size = 32;
#endif /* defined (VXWORKS) */
// Loading parameters (number of messages to push through queues) for
// performance tests.
static int MIN_LOAD = 20;
static int MAX_LOAD = 1000;
static int LOAD_STEP = 20;
// Time offsets for a minute in the past (for the best case test) and
// two seconds in the future (for the worst case and randomized
// tests).
static const ACE_Time_Value far_past_offset (-60, 0);
static const ACE_Time_Value near_future_offset (2, 0);
static const ACE_Time_Value offset_step (0, 5);
// The order consumer dequeues a message from the passed
// Message_Queue, and checks its data character against the passed
// string of characters which has the expected ordering. Suppliers
// and consumers do not allocate or deallocate messages, to avoid
// timing delays and timing jitter in the test: the main function is
// responsible for all initialization allocation and cleanup before,
// between, and after (but not during) the transfer of messages from a
// supplier to the corresponding consumer.
static void *
order_consumer (void *args)
{
ACE_TEST_ASSERT (args != 0);
ACE_Message_Queue<ACE_SYNCH> *msg_queue =
static_cast<ArgStruct *> (args)->queue_;
const char *receipt_order =
static_cast<ArgStruct *> (args)->order_string_;
u_int expected_count =
static_cast<ArgStruct *> (args)->expected_count_;
ACE_TEST_ASSERT (receipt_order != 0);
ACE_TEST_ASSERT (msg_queue != 0);
u_int local_count = 0;
// Keep looping, reading a message out of the queue, until we reach
// the end of the receipt order string, which signals us to quit.
for (const char *expected = receipt_order;
*expected != '\0';
++expected)
{
ACE_Message_Block *mb = 0;
int result = msg_queue->dequeue_head (mb);
if (result == -1)
break;
local_count++;
ACE_TEST_ASSERT (*expected == *mb->rd_ptr ());
}
ACE_TEST_ASSERT (local_count == ACE_OS::strlen (receipt_order));
ACE_TEST_ASSERT (local_count == expected_count);
return 0;
}
// The order producer runs through the passed send string, setting the
// read pointer of the current message to the current character
// position in the string, and then queueing the message in the
// message list, where it is removed by the order consumer.
static void *
order_producer (void *args)
{
ACE_TEST_ASSERT (args != 0);
ACE_Message_Queue<ACE_SYNCH> *msg_queue =
static_cast<ArgStruct *> (args)->queue_;
const char *send_order =
static_cast<ArgStruct *> (args)->order_string_;
ACE_Message_Block **block_array =
static_cast<ArgStruct *> (args)->array_;
int expected_count =
static_cast<ArgStruct *> (args)->expected_count_;
ACE_TEST_ASSERT (send_order != 0);
ACE_TEST_ASSERT (block_array != 0);
// Iterate through the send order string and the message block
// array, setting the current message block's read pointer to the
// current position in the send order string.
int local_count = 0;
const char *c;
for (local_count = 0, c = send_order; *c != '\0'; ++local_count, ++c)
{
// point to the current message block
ACE_Message_Block *mb = block_array [local_count];
ACE_TEST_ASSERT (mb != 0);
// Set the current send character in the current message block
// at its read pointer position, and adjust the write pointer.
*mb->wr_ptr () = *c;
mb->wr_ptr (1);
// Enqueue the message block in priority order.
if (msg_queue->enqueue_prio (mb) == -1)
break;
}
ACE_TEST_ASSERT (local_count == expected_count);
return 0;
}
static int
run_order_test (ACE_Message_Queue<ACE_SYNCH>* msg_queue,
const char *send_order,
const char *receipt_order)
{
u_int i;
u_int array_size = ACE_OS::strlen (send_order);
ACE_TEST_ASSERT (msg_queue != 0);
ACE_TEST_ASSERT (send_order != 0);
ACE_TEST_ASSERT (receipt_order != 0);
ACE_TEST_ASSERT (ACE_OS::strlen (send_order) == ACE_OS::strlen (receipt_order));
ArgStruct supplier_args, consumer_args;
supplier_args.queue_ = msg_queue;
supplier_args.order_string_ = send_order;
supplier_args.expected_count_ = ACE_OS::strlen (send_order);
// Allocate message blocks, fill in pointer array, set static
// information.
ACE_NEW_RETURN (supplier_args.array_,
ACE_Message_Block *[array_size],
-1);
for (i = 0; i < array_size; ++i)
{
// Construct a message new block off the heap, to hold a single
// character.
ACE_NEW_RETURN (supplier_args.array_[i],
ACE_Message_Block (1),
-1);
// Assign static (minimal) message priority in ascending order.
supplier_args.array_[i]->msg_priority (i);
// Assign every other message short or long execution time.
supplier_args.array_[i]->msg_execution_time (((i % 2)
? slow_execution
: fast_execution));
}
consumer_args.queue_ = msg_queue;
consumer_args.order_string_ = receipt_order;
consumer_args.expected_count_ = ACE_OS::strlen (receipt_order);
consumer_args.array_ = 0;
// Construct pending and late absolute deadline times.
ACE_Time_Value current_time (0, 0);
ACE_Time_Value future_deadline (1, 0);
ACE_Time_Value near_deadline (0, 500000);
ACE_Time_Value recent_deadline (0, -1);
ACE_Time_Value past_deadline (0, -500000);
current_time = ACE_OS::gettimeofday ();
future_deadline += current_time;
near_deadline += current_time;
recent_deadline += current_time;
past_deadline += current_time;
// Set absolute time of deadline associated with the message.
for (i = 0; i < array_size; ++i)
{
switch ((4 * i) / array_size)
{
case 0:
supplier_args.array_[i]->msg_deadline_time (future_deadline);
break;
case 1:
supplier_args.array_[i]->msg_deadline_time (near_deadline);
break;
case 2:
supplier_args.array_[i]->msg_deadline_time (recent_deadline);
break;
case 3:
supplier_args.array_[i]->msg_deadline_time (past_deadline);
break;
// should never reach here, but its better to make sure
default:
ACE_TEST_ASSERT ((4 * i) / array_size < 4);
break;
}
}
// run the order test producer
order_producer (&supplier_args);
// run the order test consumer
order_consumer (&consumer_args);
// free all the allocated message blocks
for (i = 0; i < array_size; ++i)
{
delete supplier_args.array_[i];
}
// free the allocated pointer array
delete [] supplier_args.array_;
return 0;
}
// The performance consumer starts a timer, dequeues all messages from
// the passed Message_Queue, stops the timer, and reports the number
// of dequeued messages, the elapsed time, and the average time per
// message.
static void *
performance_consumer (void * args)
{
ACE_High_Res_Timer timer;
ACE_TEST_ASSERT (args != 0);
ACE_Message_Queue<ACE_SYNCH> *msg_queue =
static_cast<ArgStruct *> (args)->queue_;
u_int expected_count =
static_cast<ArgStruct *> (args)->expected_count_;
ACE_TEST_ASSERT (msg_queue != 0);
u_int local_count = 0;
ACE_Message_Block *mb = 0;
// reset, then start timer
timer.reset ();
timer.start ();
// Keep looping, reading a message out of the queue, until the
// expected number of messages have been dequeued.
for (local_count = 0; local_count < expected_count; ++local_count)
if (msg_queue->dequeue_head (mb) == -1)
break;
// Stop timer, obtain and report its elapsed time.x
timer.stop ();
ACE_Time_Value tv;
timer.elapsed_time (tv);
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%6u, %6u, %f"),
local_count,
tv.msec (),
(ACE_timer_t) tv.msec () / local_count));
ACE_TEST_ASSERT (local_count == expected_count);
return 0;
}
// The performance producer starts a timer, enqueues the passed
// messages setting the read pointer of each message to the first
// character position in the passed string, stops the timer, and
// reports the number of enqueued messages, the elapsed time, and the
// average time per message.
static void *
performance_producer (void *args)
{
ACE_High_Res_Timer timer;
ACE_TEST_ASSERT (args != 0);
ACE_Message_Queue<ACE_SYNCH> *msg_queue =
static_cast<ArgStruct *> (args)->queue_;
ACE_Message_Block **block_array =
static_cast<ArgStruct *> (args)->array_;
int expected_count =
static_cast<ArgStruct *> (args)->expected_count_;
ACE_TEST_ASSERT (send_order != 0);
ACE_TEST_ASSERT (block_array != 0);
// reset, then start timer
timer.reset ();
timer.start ();
// Iterate through the message block array, setting the character
// under the current message block's read pointer to null before
// enqueueing the message block.
int local_count = 0;
for (local_count = 0; local_count < expected_count; ++local_count)
{
// Point to the current message block.
ACE_Message_Block *mb = block_array [local_count];
ACE_TEST_ASSERT (mb != 0);
// Set a character in the current message block at its
// read pointer position, and adjust the write pointer.
mb->reset();
*mb->wr_ptr () = 'a';
mb->wr_ptr (1);
// Enqueue the message block in priority order.
if (msg_queue->enqueue_prio (mb) == -1)
break;
}
// Stop timer, obtain and report its elapsed time.
timer.stop ();
ACE_Time_Value tv;
timer.elapsed_time (tv);
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%6u, %6u, %f, "),
local_count,
tv.msec (),
(ACE_timer_t) tv.msec () / local_count));
ACE_TEST_ASSERT (local_count == expected_count);
return 0;
}
static int
run_performance_test (u_int min_load,
u_int max_load,
u_int load_step,
Test_Type test_type)
{
ArgStruct supplier_args, consumer_args; // supplier and consumer argument strings
u_int load = 0; // message load
ACE_Time_Value *time_offsets; // pointer to array of time offsets
ACE_Time_Value current_time; // current time value
u_int shuffle_index; // used to shuffle arrays
int random_int = 0; // also used to shuffle arrays
ACE_Message_Block *temp_block; // temporary message block pointer
ACE_Time_Value temp_time; // temporary time value
// Build a static queue, a deadline based dynamic queue, and a
// laxity based dynamic queue.
ACE_Message_Queue<ACE_SYNCH> *static_queue =
ACE_Message_Queue_Factory<ACE_SYNCH>::create_static_message_queue (max_queue);
ACE_TEST_ASSERT (static_queue != 0);
ACE_Message_Queue<ACE_SYNCH> *deadline_queue =
ACE_Message_Queue_Factory<ACE_SYNCH>::create_deadline_message_queue (max_queue);
ACE_TEST_ASSERT (deadline_queue != 0);
ACE_Message_Queue<ACE_SYNCH> *laxity_queue =
ACE_Message_Queue_Factory<ACE_SYNCH>::create_laxity_message_queue (max_queue);
ACE_TEST_ASSERT (laxity_queue != 0);
// Zero out unused struct members.
supplier_args.order_string_ = 0;
consumer_args.order_string_ = 0;
consumer_args.array_ = 0;
// Print column headings for the specific test type.
switch (test_type)
{
case BEST:
ACE_DEBUG ((LM_INFO,
ACE_TEXT ("\n\nenqueued, best static time, best static avg, ")
ACE_TEXT ("dequeued, best static time, best static avg, ")
ACE_TEXT ("enqueued, best deadline time, best deadline avg, ")
ACE_TEXT ("dequeued, best deadline time, best deadline avg, ")
ACE_TEXT ("enqueued, best laxity time, best laxity avg, ")
ACE_TEXT ("dequeued, best laxity time, best laxity avg\n")));
break;
case WORST:
ACE_DEBUG ((LM_INFO,
ACE_TEXT ("\n\nenqueued, worst static time, worst static avg, ")
ACE_TEXT ("dequeued, worst static time, worst static avg, ")
ACE_TEXT ("enqueued, worst deadline time, worst deadline avg, ")
ACE_TEXT ("dequeued, worst deadline time, worst deadline avg, ")
ACE_TEXT ("enqueued, worst laxity time, worst laxity avg, ")
ACE_TEXT ("dequeued, worst laxity time, worst laxity avg\n")));
break;
case RANDOM:
ACE_DEBUG ((LM_INFO,
ACE_TEXT ("\n\nenqueued, random static time, random static avg, ")
ACE_TEXT ("dequeued, random static time, random static avg, ")
ACE_TEXT ("enqueued, random deadline time, random deadline avg, ")
ACE_TEXT ("dequeued, random deadline time, random deadline avg, ")
ACE_TEXT ("enqueued, random laxity time, random laxity avg, ")
ACE_TEXT ("dequeued, random laxity time, random laxity avg\n")));
break;
default:
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("unknown test type %d"),
test_type),
-1);
}
// Iterate through the message loads, and at each load do an
// identical test on all queues.
for (load = min_load; load <= max_load; load += load_step)
{
u_int i;
supplier_args.expected_count_ = load;
consumer_args.expected_count_ = load;
// Allocate message blocks, fill in pointer array, set static
// information.
ACE_NEW_RETURN (supplier_args.array_,
ACE_Message_Block *[load],
-1);
// Allocate array of timing offsets.
ACE_NEW_RETURN (time_offsets,
ACE_Time_Value [load],
-1);
// Fill in information for all types of tests.
for (i = 0; i < load; ++i)
{
// Construct a message new block off the heap, to hold a
// single character.
ACE_NEW_RETURN (supplier_args.array_[i],
ACE_Message_Block (1),
-1);
// Assign every other message short or long execution time.
supplier_args.array_[i]->msg_execution_time (((i % 2)
? slow_execution
: fast_execution));
}
// Fill in information for the specific type of test.
switch (test_type)
{
case BEST:
// Fill in best case information.
time_offsets [0] = far_past_offset;
supplier_args.array_[0]->msg_priority (load);
for (i = 1; i < load; ++i)
{
// Assign static (minimal) message priority in
// descending order.
supplier_args.array_[i]->msg_priority (load - i);
// Assign time to deadline in descending order.
time_offsets [i] = time_offsets [i - 1] + offset_step;
}
break;
case WORST:
// Fill in worst case information.
time_offsets [0] = near_future_offset;
supplier_args.array_[0]->msg_priority (0);
for (i = 1; i < load; ++i)
{
// Assign static (minimal) message priority in ascending
// order.
supplier_args.array_[i]->msg_priority (i);
// Assign time to deadline in descending order (puts
// dynamic priority in ascending order).
time_offsets [i] = time_offsets [i - 1] - offset_step;
}
break;
case RANDOM:
// Fill in worst case information.
time_offsets [0] = near_future_offset;
supplier_args.array_[0]->msg_priority (0);
for (i = 1; i < load; ++i)
{
// Assign static (minimal) message priority in ascending
// order.
supplier_args.array_[i]->msg_priority (i);
// Assign time to deadline in descending order (puts
// dynamic priority in ascending order).
time_offsets [i] = time_offsets [i - 1] - offset_step;
}
// Then shuffle the arrays in tandem.
for (i = 0; i < load; ++i)
{
// Choose a (pseudo) random integer (evenly distributed
// over [0, load-1]).
if (RAND_MAX >= load)
{
// Discard integers in the tail of the random range
// that do not distribute evenly modulo the number
// of messages.
do
random_int = ACE_OS::rand ();
while (random_int >= (int)(RAND_MAX - (RAND_MAX % load)));
}
else if (RAND_MAX < load - 1)
// This should only happen for a *very* large messages
// relative to the system's representation size.
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("Insufficient range of random numbers")),
-1);
shuffle_index = random_int % load;
// Swap the message at the current index with the one at
// the shuffle index.
temp_block = supplier_args.array_[i];
supplier_args.array_[i] = supplier_args.array_[shuffle_index];
supplier_args.array_[shuffle_index] = temp_block;
// Swap the time at the current index with the one at
// the shuffle index.
temp_time = time_offsets [i];
time_offsets [i] = time_offsets [shuffle_index];
time_offsets [shuffle_index] = temp_time;
}
break;
default:
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("unknown test type %d"),
test_type),
-1);
}
// Set absolute time of deadline associated with each message.
current_time = ACE_OS::gettimeofday ();
for (i = 0; i < load; ++i)
supplier_args.array_[i]->msg_deadline_time (time_offsets [i] + current_time);
// Run the performance test producer and consumer on the static
// queue.
supplier_args.queue_ = static_queue;
performance_producer (&supplier_args);
consumer_args.queue_ = static_queue;
performance_consumer (&consumer_args);
// Add a comma delimiter for most recent outputs.
ACE_DEBUG ((LM_INFO,
ACE_TEXT (", ")));
// Run the performance test producer and consumer on the
// deadline queue.
supplier_args.queue_ = deadline_queue;
performance_producer (&supplier_args);
consumer_args.queue_ = deadline_queue;
performance_consumer (&consumer_args);
// Add a comma delimiter for most recent outputs.
ACE_DEBUG ((LM_INFO,
ACE_TEXT (", ")));
// Run the performance test producer and consumer on the laxity
// queue.
supplier_args.queue_ = laxity_queue;
performance_producer (&supplier_args);
consumer_args.queue_ = laxity_queue;
performance_consumer (&consumer_args);
// Move to the next line of output.
ACE_DEBUG ((LM_INFO,
ACE_TEXT ("\n")));
delete [] time_offsets;
// Free all the allocated message blocks.
for (i = 0; i < load; ++i)
delete supplier_args.array_[i];
// Free the allocated pointer array.
delete [] supplier_args.array_;
}
// Free resources and leave.
delete static_queue;
delete deadline_queue;
delete laxity_queue;
return 0;
}
#endif /* ACE_HAS_TIMED_MESSAGE_BLOCKS */
int
run_main (int, ACE_TCHAR *[])
{
ACE_START_TEST (ACE_TEXT ("Dynamic_Priority_Test"));
#if defined (ACE_HAS_TIMED_MESSAGE_BLOCKS)
// Enable FIFO scheduling, e.g., RT scheduling class on Solaris.
if (ACE_OS::sched_params (
ACE_Sched_Params (
ACE_SCHED_FIFO,
ACE_Sched_Params::priority_min (ACE_SCHED_FIFO),
ACE_SCOPE_PROCESS)) != 0)
{
if (ACE_OS::last_error () == EPERM)
ACE_DEBUG ((LM_MAX,
ACE_TEXT ("user is not superuser, ")
ACE_TEXT ("so remain in time-sharing class\n")));
else if (ACE_OS::last_error () == ENOTSUP)
ACE_DEBUG ((LM_MAX,
ACE_TEXT ("process scope scheduling is not available, ")
ACE_TEXT ("so remain in time-sharing class\n")));
else
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("%n: ACE_OS::sched_params failed\n%a")),
-1);
}
// Test factory, static message queue.
ACE_Message_Queue<ACE_SYNCH> *test_queue =
ACE_Message_Queue_Factory<ACE_SYNCH>::create_static_message_queue (max_queue);
ACE_TEST_ASSERT (test_queue != 0);
run_order_test (test_queue,
send_order,
static_receipt_order);
delete test_queue;
// Test factory, dynamic message queue (deadline strategy).
test_queue =
ACE_Message_Queue_Factory<ACE_SYNCH>::create_deadline_message_queue (max_queue);
ACE_TEST_ASSERT (test_queue != 0);
run_order_test (test_queue,
send_order,
deadline_receipt_order);
delete test_queue;
// Test factory, dynamic message queue (laxity strategy).
test_queue =
ACE_Message_Queue_Factory<ACE_SYNCH>::create_laxity_message_queue (max_queue);
ACE_TEST_ASSERT (test_queue != 0);
run_order_test (test_queue,
send_order,
laxity_receipt_order);
delete test_queue;
#if defined (VXWORKS)
// test factory for VxWorks message queue.
ACE_Message_Queue_Vx *test_queue_vx =
ACE_Message_Queue_Factory<ACE_NULL_SYNCH>::create_Vx_message_queue (vx_max_queue,
vx_msg_size);
ACE_TEST_ASSERT (test_queue_vx != 0);
// (TBD - does message receipt order test make any sense for Vx Queue ?
// If so, uncomment order test, or if not remove order test, below)
// @@ % levine 22 Jul 1998 % It'd be nice to run the test, but:
// ACE_Message_Queue_Vx isa
// ACE_Message_Queue<ACE_NULL_SYNCH>, not an
// ACE_Message_Queue<ACE_MT_SYNCH>, so we're
// not type-compatible.
// run_order_test (test_queue, send_order, static_receipt_order);
delete test_queue_vx;
#endif /* VXWORKS */
// For each of an increasing number of message loads, run the same
// performance test (best case, worst case, and randomized, over
// each kind of queue).
run_performance_test (MIN_LOAD,
MAX_LOAD,
LOAD_STEP,
BEST);
run_performance_test (MIN_LOAD,
MAX_LOAD,
LOAD_STEP,
WORST);
run_performance_test (MIN_LOAD,
MAX_LOAD,
LOAD_STEP,
RANDOM);
#else
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("ACE is not compiled with ACE_HAS_TIMED_MESSAGE_BLOCKS enabled\n")));
#endif /* ACE_HAS_TIMED_MESSAGE_BLOCKS */
ACE_END_TEST;
return 0;
}
|