1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
//=============================================================================
/**
* @file RW_Process_Mutex_Test.cpp
*
* $Id: RW_Process_Mutex_Test.cpp 93638 2011-03-24 13:16:05Z johnnyw $
*
* Tests an <ACE_RW_Process_Mutex> shared between multiple child processes.
*
*
* @author Steve Huston <shuston@riverace.com>
*/
//=============================================================================
#include "test_config.h"
#include "ace/Process.h"
#include "ace/RW_Process_Mutex.h"
#include "ace/SString.h"
#include "ace/Get_Opt.h"
#include "ace/ACE.h"
#include "ace/INET_Addr.h"
#include "ace/SOCK_Dgram.h"
#include "ace/Time_Value.h"
#include "ace/OS_NS_sys_time.h"
#include "ace/OS_NS_unistd.h"
// The parent process is number -1. Writer is 0; Readers are 1-3.
static int child_nr = -1;
static u_short reporting_port = 0;
static const int Nr_Processes = 4;
static ACE_TString mutex_name;
static ACE_TCHAR mutex_check[MAXPATHLEN+1];
// The child processes spawned will report times that they hold the lock.
// The Child class gets records of the timestamps when the lock is acquired
// and released. When the children are done, the time ranges are checked to
// be sure that the writer and readers aren't overlapping and that multiple
// readers can acquire the lock simultaneously.
class Time_Range
{
public:
Time_Range () : start_ (0), stop_ (0) {}
void set (const Time_Range &range);
void set (const ACE_Time_Value &start, const ACE_Time_Value &stop);
bool overlaps (const Time_Range &other) const;
private:
ACE_Time_Value start_;
ACE_Time_Value stop_;
};
// Children send range reports to the waiting parent using Range_Report.
struct Range_Report
{
int child_;
Time_Range range_;
};
void
Time_Range::set (const Time_Range &range)
{
this->start_ = range.start_;
this->stop_ = range.stop_;
}
void
Time_Range::set (const ACE_Time_Value &start, const ACE_Time_Value &stop)
{
this->start_ = start;
this->stop_ = stop;
}
bool
Time_Range::overlaps (const Time_Range &other) const
{
// Be careful because timestamps can appear to be the same when a
// process unlocks and a waiter immediately locks.
if ((this->start_ >= other.start_ && this->start_ < other.stop_) ||
(this->stop_ > other.start_ && this->stop_ < other.stop_))
return true;
return false;
}
class Child : public ACE_Process
{
public:
Child () : range_count_ (0) {}
void add_range (const Time_Range &range);
bool any_overlaps (const Child &other) const;
private:
enum { Max_Ranges = 5 };
int range_count_;
Time_Range ranges_[Max_Ranges];
};
void
Child::add_range (const Time_Range &range)
{
if (this->range_count_ == Max_Ranges)
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Child process %d adds too many ranges\n"),
(int)(this->getpid ())));
return;
}
this->ranges_[this->range_count_].set (range);
++this->range_count_;
}
bool
Child::any_overlaps (const Child &other) const
{
bool overlap = false;
for (int i = 0; i < this->range_count_ && !overlap; ++i)
{
for (int j = 0; j < other.range_count_ && !overlap; ++j)
{
if (this->ranges_[i].overlaps (other.ranges_[j]))
overlap = true;
}
}
return overlap;
}
// Explain usage and exit.
static void
print_usage_and_die (void)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("usage: %n [-c n (child number) -p n (port number)] [-n mutex name]\n")));
ACE_OS::exit (1);
}
// Parse the command-line arguments and set options.
static void
parse_args (int argc, ACE_TCHAR *argv[])
{
ACE_Get_Opt get_opt (argc, argv, ACE_TEXT("c:n:p:"));
mutex_name.set (ACE_TEXT ("RW_Process_Mutex_Test.lock")); // Default name
int c;
while ((c = get_opt ()) != -1)
switch (c)
{
case 'c':
child_nr = ACE_OS::atoi (get_opt.opt_arg ());
break;
case 'n':
mutex_name.set (get_opt.opt_arg ());
break;
case 'p':
reporting_port = (u_short)ACE_OS::atoi (get_opt.opt_arg ());
break;
default:
print_usage_and_die ();
break;
}
// Now that the mutex name is known, set up the checker file name.
ACE_OS::strncpy (mutex_check, mutex_name.c_str (), MAXPATHLEN);
ACE_OS::strncat (mutex_check, ACE_TEXT ("_checker"), MAXPATHLEN);
}
/*
* The set of readers and the writer will operate in a staggered sequence
* of acquiring and releasing the lock. The sequence is designed to exercise
* waiting behavior of both readers and writer, as well as allowing multiple
* readers in, without getting tripped up by any differences in ordering
* on different platforms which may favor writers, or vice-versa.
* In this timeline, time on seconds is on the left, time holding the lock
* is solid, time waiting is dots, acquire/release point is a dash, and
* time without the lock is blank.
*
* TIME WRITER READER1 READER2 READER3
* 0 |
* |
* 1 | .
* | .
* 2 - - -
* | |
* 3 | | -
* | | |
* 4 - | |
* | |
* 5 - |
* |
* 6 - -
* |
* 7 | . . .
* | . . .
* 8 - - - -
* | | |
* 9 | | |
*
* A file is used to test the sequencing. When the writer first gets the
* lock, it will ensure the file is not present. At the end of its time
* holding the lock the first time, it will write a "writer 1" string to
* the file. When it gets the lock the second time, it will write a
* different string to the file, and just before releasing the second time
* write a "writer 2" string to the file. The readers all check to be sure
* that the file is present and says "writer 1" at the start and end of
* their periods of holding the reader lock and, similarly, check for
* "writer 2" the second time they hold the lock.
*/
static void
reader (int num)
{
// Let the writer get there first.
ACE_OS::sleep (1);
ACE_SOCK_Dgram sock;
ACE_INET_Addr parent;
parent.set (reporting_port, ACE_LOCALHOST, 1, AF_INET);
ACE_TCHAR me_str[80];
parent.addr_to_string (me_str, 80);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Sending reports to %s\n"), me_str));
if (sock.open (ACE_Addr::sap_any, PF_INET) == -1)
ACE_ERROR ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("UDP open")));
Range_Report report;
report.child_ = num;
ACE_Time_Value start (ACE_Time_Value::zero), stop (ACE_Time_Value::zero);
ACE_RW_Process_Mutex mutex (mutex_name.c_str ());
// Make sure the constructor succeeded
if (ACE_LOG_MSG->op_status () != 0)
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Reader %d, mutex %s %p\n"),
num,
mutex_name.c_str (),
ACE_TEXT ("ctor")));
return;
}
ACE_OS::sleep (num);
// Grab the lock
if (-1 == mutex.acquire_read ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Reader %d %p\n"),
num,
ACE_TEXT ("first acquire_read")));
else
{
start = ACE_OS::gettimeofday ();
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Reader %d acquired first time\n"),
num));
}
// Wait a bit, then release and report the range held.
ACE_OS::sleep (num);
// Release the lock then wait; in the interim, the writer should change
// the file.
stop = ACE_OS::gettimeofday ();
if (-1 == mutex.release ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Reader %d %p\n"),
num,
ACE_TEXT ("first release")));
else
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Reader %d released first time\n"), num));
report.range_.set (start, stop);
ssize_t bytes = sock.send (&report, sizeof (report), parent);
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Reader %d sent %b byte report\n"),
num,
bytes));
ACE_OS::sleep (4 - num);
start = stop = ACE_Time_Value::zero;
if (-1 == mutex.acquire_read ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Reader %d %p\n"),
num,
ACE_TEXT ("second acquire_read")));
else
{
start = ACE_OS::gettimeofday ();
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Reader %d acquired second time\n"),
num));
}
// Done; small delay, release, report, and return.
ACE_OS::sleep (1);
stop = ACE_OS::gettimeofday ();
if (-1 == mutex.release ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Reader %d %p\n"),
num,
ACE_TEXT ("second release")));
else
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Reader %d released second time; done\n"),
num));
report.range_.set (start, stop);
bytes = sock.send (&report, sizeof (report), parent);
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Reader %d sent %b byte report\n"),
num,
bytes));
sock.close ();
return;
}
static void
writer (void)
{
ACE_RW_Process_Mutex mutex (mutex_name.c_str ());
// Make sure the constructor succeeded
if (ACE_LOG_MSG->op_status () != 0)
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Writer, mutex %s %p\n"),
mutex_name.c_str (),
ACE_TEXT ("ctor")));
return;
}
ACE_SOCK_Dgram sock;
ACE_INET_Addr parent;
parent.set (reporting_port, ACE_LOCALHOST, 1, AF_INET);
ACE_TCHAR me_str[80];
parent.addr_to_string (me_str, 80);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Sending reports to %s\n"), me_str));
if (sock.open (ACE_Addr::sap_any, PF_INET) == -1)
ACE_ERROR ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("UDP open")));
Range_Report report;
report.child_ = 0; // We're the writer
ACE_Time_Value start (ACE_Time_Value::zero), stop (ACE_Time_Value::zero);
// Grab the lock
if (-1 == mutex.acquire_write ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Writer first %p\n"),
ACE_TEXT ("acquire_write")));
else
{
start = ACE_OS::gettimeofday ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Writer acquired first time\n")));
}
// Now sleep, making the readers wait for the lock. Then release the lock,
// sleep, and reacquire the lock.
ACE_OS::sleep (2);
stop = ACE_OS::gettimeofday ();
if (-1 == mutex.release ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Writer %p\n"),
ACE_TEXT ("first release")));
else
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Writer released first time\n")));
report.range_.set (start, stop);
ssize_t bytes = sock.send (&report, sizeof (report), parent);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Writer sent %b byte report\n"), bytes));
ACE_OS::sleep (1); // Ensure we don't immediately grab the lock back
start = stop = ACE_Time_Value::zero;
if (-1 == mutex.acquire_write ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Writer second %p\n"),
ACE_TEXT ("acquire_write")));
else
{
start = ACE_OS::gettimeofday ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Writer acquired second time\n")));
}
ACE_OS::sleep (2);
stop = ACE_OS::gettimeofday ();
if (-1 == mutex.release ())
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Writer %p\n"),
ACE_TEXT ("second release")));
else
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Writer released second time\n")));
report.range_.set (start, stop);
bytes = sock.send (&report, sizeof (report), parent);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Writer sent %b byte report\n"), bytes));
sock.close ();
return;
}
int
run_main (int argc, ACE_TCHAR *argv[])
{
parse_args (argc, argv);
// Child process code.
if (child_nr >= 0)
{
ACE_TCHAR lognm[MAXPATHLEN];
int mypid (ACE_OS::getpid ());
ACE_OS::sprintf(lognm,
ACE_TEXT ("RW_Process_Mutex_Test-child-%d"),
(int)mypid);
ACE_START_TEST (lognm);
if (child_nr == 0)
writer ();
else
reader (child_nr);
ACE_END_LOG;
}
else
{
ACE_START_TEST (ACE_TEXT ("RW_Process_Mutex_Test"));
// Although it should be safe for each process to construct and
// destruct the rw lock, this can disturb other process still
// using the lock. This is not really correct, and should be
// looked at, but it gets things moving.
// Also see Process_Mutex_Test.cpp for similar issue.
ACE_RW_Process_Mutex mutex (mutex_name.c_str ());
// Make sure the constructor succeeded
if (ACE_LOG_MSG->op_status () != 0)
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Parent, mutex %s %p\n"),
mutex_name.c_str (),
ACE_TEXT ("ctor")));
}
#if !defined (ACE_WIN32) && defined (ACE_USES_WCHAR)
static const ACE_TCHAR* format = ACE_TEXT ("%ls -c %d -p %u -n %ls");
#else
static const ACE_TCHAR* format = ACE_TEXT ("%s -c %d -p %u -n %s");
#endif /* !ACE_WIN32 && ACE_USES_WCHAR */
// The parent process reads time ranges sent from the children via
// UDP. Grab an unused UDP port to tell the children to send to.
ACE_INET_Addr me;
ACE_SOCK_Dgram sock;
if (sock.open (ACE_Addr::sap_any, PF_INET) == -1)
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("Socket %p\n"),
ACE_TEXT ("open")),
-1);
sock.get_local_addr (me);
ACE_TCHAR me_str[80];
me.addr_to_string (me_str, 80);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Receiving on %s\n"), me_str));
// Spawn 1 writer and 3 reader processes that will contend for the
// lock.
Child writer;
Child readers[Nr_Processes - 1];
int i;
for (i = 0; i < Nr_Processes; i++)
{
Child *child = (i == 0 ? &writer : &readers[i-1]);
ACE_Process_Options options;
options.command_line (format,
argc > 0 ? argv[0] : ACE_TEXT ("RW_Process_Mutex_Test"),
i,
(unsigned int)me.get_port_number (),
mutex_name.c_str ());
if (child->spawn (options) == -1)
{
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("spawn of child %d %p\n"),
i,
ACE_TEXT ("failed")),
-1);
}
else
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Child process %d has pid = %d.\n"),
i,
(int)(child->getpid ())));
}
}
// Keep reading time ranges reported from the children until all the
// children have exited. Alternate between checking for a range and
// checking for exits.
int processes = Nr_Processes;
Child *children[Nr_Processes];
for (i = 0; i < Nr_Processes; i++)
children[i] = (i == 0 ? &writer : &readers[i-1]);
Range_Report report;
ACE_Time_Value poll (0);
ACE_INET_Addr from;
ssize_t bytes;
while (processes > 0)
{
ACE_Time_Value limit (10);
bytes = sock.recv (&report, sizeof (report), from, 0, &limit);
if (bytes > 0)
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Report from child %d; %b bytes\n"),
report.child_, bytes));
if (report.child_ == 0)
writer.add_range (report.range_);
else
{
if (report.child_ >= 1 && report.child_ < Nr_Processes)
readers[report.child_ - 1].add_range (report.range_);
else
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Report from out-of-range child #%d\n"),
report.child_));
}
}
else
{
if (errno == ETIME)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("UDP time out; check child exits\n")));
else
ACE_ERROR ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("UDP recv")));
}
for (i = 0; i < Nr_Processes; i++)
{
if (children[i] == 0)
continue;
ACE_exitcode child_status;
// See if the child has exited.
int wait_result = children[i]->wait (poll, &child_status);
if (wait_result == -1)
ACE_ERROR ((LM_ERROR, ACE_TEXT ("Wait for child %d, %p\n"),
i, ACE_TEXT ("error")));
else if (wait_result != 0)
{
if (child_status == 0)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Child %d finished ok\n"),
(int)(children[i]->getpid ())));
else
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Child %d finished with status %d\n"),
(int)(children[i]->getpid ()), child_status));
children[i] = 0;
--processes;
}
}
}
sock.close ();
if (0 != mutex.remove ())
ACE_ERROR ((LM_ERROR, ACE_TEXT ("%p\n"), ACE_TEXT ("mutex remove")));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Comparing time ranges...\n")));
// The writer should never overlap any readers
bool writer_overlap = false;
for (i = 0; i < Nr_Processes - 1; ++i)
{
if (writer.any_overlaps (readers[i]))
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("Writer overlaps reader %d\n"),
i+1));
writer_overlap = true;
}
}
if (!writer_overlap)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Writer does not overlap with readers; Ok\n")));
// And there should be some overlap between readers.
bool reader_overlap = false;
for (i = 0; i < Nr_Processes - 1; ++i)
{
// Just compare to those higher, else it compares the same ones,
// only in reverse.
for (int j = i + 1; j < Nr_Processes - 1; ++j)
{
if (readers[i].any_overlaps (readers[j]))
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("Reader %d overlaps reader %d; Ok\n"),
i + 1, j + 1));
reader_overlap = true;
}
}
}
if (!reader_overlap)
ACE_ERROR ((LM_ERROR, ACE_TEXT ("No readers overlapped!\n")));
ACE_END_TEST;
}
return 0;
}
|