1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
//=============================================================================
/**
* @file Recursive_Mutex_Test.cpp
*
* $Id: Recursive_Mutex_Test.cpp 93638 2011-03-24 13:16:05Z johnnyw $
*
* This test program verifies the functionality of the ACE_OS
* implementation of recursive mutexes on Win32 and Posix
* pthreads.
*
*
* @author Prashant Jain <pjain@cs.wustl.edu> and Douglas C. Schmidt <schmidt@cs.wustl.edu>
*/
//=============================================================================
#include "test_config.h"
#include "ace/Get_Opt.h"
#include "ace/Thread_Manager.h"
#include "ace/OS_NS_time.h"
#include "ace/OS_NS_sys_time.h"
#include "ace/OS_NS_unistd.h"
#include "ace/Recursive_Thread_Mutex.h"
#if defined (ACE_HAS_THREADS)
#include "ace/Guard_T.h"
// For all platforms except for Windows use the
// ACE_Recursive_Thread_Mutex. Since Windows only supports timed
// recursive process mutexes and not timed recursive thread mutexes,
// use ACE_Process_Mutex.
#if defined (ACE_HAS_WTHREADS)
# include "ace/Process_Mutex.h"
typedef ACE_Process_Mutex ACE_TEST_MUTEX;
#else
# include "ace/Thread_Mutex.h"
typedef ACE_Recursive_Thread_Mutex ACE_TEST_MUTEX;
#endif
#if !defined (ACE_HAS_MUTEX_TIMEOUTS)
static int reported_notsup = 0;
#endif /* ACE_HAS_MUTEX_TIMEOUTS */
// Total number of iterations.
static int const n_iterations = 100;
static size_t n_threads = ACE_MAX_THREADS;
// ACE_Recursive_Thread_Mutex::get_nesting_level() will return a
// meaningful value.
#if !defined (ACE_HAS_WTHREADS)
static bool nesting_level_supported = false;
#endif
static void
test_recursion_depth (int nesting_level,
ACE_TEST_MUTEX *rm)
{
if (nesting_level < n_iterations)
{
#if !defined (ACE_HAS_WTHREADS)
// This will work for Windows, too, if ACE_TEST_MUTEX is
// ACE_Recursive_Thread_Mutex instead of ACE_Process_Mutex.
if (nesting_level_supported
&& nesting_level != 0
&& nesting_level != rm->get_nesting_level ())
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) Pre-mutex acquire nesting ")
ACE_TEXT ("levels do not match.\n")));
}
#endif /* !ACE_HAS_WTHREADS */
int result = rm->acquire ();
ACE_TEST_ASSERT (result == 0);
#if !defined (ACE_HAS_WTHREADS)
if (nesting_level_supported
&& (nesting_level + 1) != rm->get_nesting_level ())
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) Post-mutex acquire nesting ")
ACE_TEXT ("levels do not match.\n")));
}
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = acquired, nesting = %d, thread id = %u\n"),
rm->get_nesting_level (),
rm->get_thread_id ()));
#endif /* !ACE_HAS_WTHREADS */
test_recursion_depth (nesting_level + 1,
rm);
#if !defined (ACE_HAS_WTHREADS)
if (nesting_level_supported
&& (nesting_level + 1) != rm->get_nesting_level ())
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) Post recursion nesting ")
ACE_TEXT ("levels do not match.\n")));
}
#endif /* !ACE_HAS_WTHREADS */
result = rm->release ();
ACE_TEST_ASSERT (result == 0);
#if !defined (ACE_HAS_WTHREADS)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = released, nesting = %d, thread id = %u\n"),
rm->get_nesting_level (),
rm->get_thread_id ()));
if (nesting_level_supported
&& nesting_level != 0
&& nesting_level != rm->get_nesting_level ())
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) Post-mutex release nesting ")
ACE_TEXT ("levels do not match.\n")));
}
#endif /* !ACE_HAS_WTHREADS */
}
}
static void
test_timed_wait (int nesting_level,
ACE_TEST_MUTEX *rm)
{
// Make sure that we're inside of a recursive level.
if (nesting_level == 0)
test_timed_wait (nesting_level + 1,
rm);
else
{
ACE_OS::srand ((u_int) ACE_OS::time (0));
for (size_t i = 0; i < ACE_MAX_ITERATIONS / 2; i++)
{
int result = 0;
// First attempt to acquire the mutex with a timeout to verify
// that mutex timeouts are working.
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = trying timed acquire on ")
ACE_TEXT ("iteration %d\n"),
i));
ACE_Time_Value delta (1, 0); // One second timeout
ACE_Time_Value timeout = ACE_OS::gettimeofday ();
timeout += delta; // Must pass absolute time to acquire().
if (rm->acquire (timeout) != 0)
{
if (errno == ETIME)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = mutex acquisition ")
ACE_TEXT ("timed out\n")));
else if (errno == ENOTSUP)
{
#if !defined (ACE_HAS_MUTEX_TIMEOUTS)
if (!reported_notsup)
{
ACE_DEBUG ((LM_INFO,
ACE_TEXT ("(%P|%t) %p, but ACE_HAS_MUTEX_TIMEOUTS is not defined - Ok\n"),
ACE_TEXT ("mutex timed acquire")));
reported_notsup = 1;
}
#else
ACE_DEBUG ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p - maybe ACE_HAS_MUTEX_TIMEOUTS should not be defined?\n"),
ACE_TEXT ("mutex timed acquire")));
#endif /* ACE_HAS_MUTEX_TIMEOUTS */
}
else
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P|%t) %p\n%a"),
ACE_TEXT ("mutex timeout failed\n")));
return;
}
}
else
{
result = rm->release ();
ACE_TEST_ASSERT (result == 0);
}
// Now try the standard mutex.
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = trying to acquire on iteration %d\n"),
i));
result = rm->acquire ();
ACE_TEST_ASSERT (result == 0);
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = acquired on iteration %d\n"),
i));
// Sleep for a random amount of time between 0 and 2 seconds.
// Note that it's ok to use rand() here because we are running
// within the critical section defined by the Thread_Mutex.
ACE_OS::sleep (ACE_OS::rand () % 2);
result = rm->release ();
ACE_TEST_ASSERT (result == 0);
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P|%t) = released on iteration %d\n"),
i));
// FUZZ: disable check_for_ACE_Guard
// Basic ACE_Guard usage - automatically acquire the mutex on
// guard construction and automatically release it on
// destruction.
{
// Construct an ACE_Guard to implicitly acquire the mutex.
ACE_Guard<ACE_TEST_MUTEX> guard (*rm);
ACE_TEST_ASSERT (guard.locked () != 0);
// Perform some operation which might exit the current scope
// prematurely, e.g. by returning or throwing an exception.
// ...
// ACE_Guard object is destroyed when exiting scope and guard
// destructor automatically releases mutex.
}
// Use an ACE_Guard to automatically acquire a mutex, but release
// the mutex early.
{
// Construct an ACE_Guard to implicitly acquire the mutex.
ACE_Guard<ACE_TEST_MUTEX> guard (*rm);
ACE_TEST_ASSERT (guard.locked () != 0);
// Perform some operation which might exit the current scope
// prematurely, e.g. by returning or throwing an exception.
// ...
// Release the mutex since we no longer need it.
guard.release ();
ACE_TEST_ASSERT (guard.locked () == 0);
// Do something else which does not require the mutex to be locked.
// ...
// ACE_Guard object's destructor will not release the mutex.
}
// Use an ACE_Guard to automatically acquire a mutex, but
// relinquish ownership of the lock so that the mutex is not
// automatically released on guard destruction. This is useful
// when an operation might not release the mutex in some
// conditions, in which case responsibility for releasing it is
// passed to someone else.
{
// Construct an ACE_Guard to implicitly acquire the mutex.
ACE_Guard<ACE_TEST_MUTEX> guard (*rm);
ACE_TEST_ASSERT (guard.locked () != 0);
// Perform some operation which might exit the current scope
// prematurely, e.g. by returning or throwing an exception.
// ...
// Relinquish ownership of the mutex lock. Someone else must
// now release it.
guard.disown ();
ACE_TEST_ASSERT (guard.locked () == 0);
// ACE_Guard object's destructor will not release the mutex.
}
// We are now responsible for releasing the mutex.
result = rm->release ();
ACE_TEST_ASSERT (result == 0);
// Construct an ACE_Guard without automatically acquiring the lock.
{
// Construct an ACE_Guard object without automatically
// acquiring the mutex or taking ownership of an existing
// lock. The third parameter tells the guard that the mutex
// has not been locked.
ACE_Guard<ACE_TEST_MUTEX> guard (*rm, 0, 0);
ACE_TEST_ASSERT (guard.locked () == 0);
// Conditionally acquire the mutex.
if (i % 2 == 0)
{
guard.acquire ();
ACE_TEST_ASSERT (guard.locked () != 0);
}
// Perform some operation that might exit the current scope
// prematurely, e.g. by returning or throwing an exception.
// ...
// ACE_Guard object is destroyed when exiting scope and guard
// destructor automatically releases if it was acquired above.
}
// Use an ACE_Guard to take ownership of a previously acquired
// mutex.
timeout = ACE_OS::gettimeofday ();
timeout += delta; // Must pass absolute time to acquire().
if (rm->acquire (timeout) == 0)
{
// Construct an ACE_Guard object without automatically
// acquiring the mutex, but instead take ownership of the
// existing lock. The third parameter tells the guard that
// the mutex has already been locked.
ACE_Guard<ACE_TEST_MUTEX> guard (*rm, 0, 1);
ACE_TEST_ASSERT (guard.locked () != 0);
// Perform some operation which might exit the current scope
// prematurely, e.g. by returning or throwing an exception.
// ...
// ACE_Guard object is destroyed when exiting scope and guard
// destructor automatically releases mutex.
}
// FUZZ: enable check_for_ACE_Guard
}
return;
}
}
static void *
recursion_worker (void *arg)
{
ACE_TEST_MUTEX *rm =
reinterpret_cast<ACE_TEST_MUTEX *> (arg);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%P|%t) Starting test of recursion depth\n")));
test_recursion_depth (0, rm);
return 0;
}
static void *
timed_worker (void *arg)
{
ACE_TEST_MUTEX *rm =
reinterpret_cast<ACE_TEST_MUTEX *> (arg);
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%P|%t) Starting test of timed wait\n")));
test_timed_wait (0, rm);
return 0;
}
#endif /* ACE_HAS_THREADS */
int
run_main (int argc, ACE_TCHAR *argv[])
{
ACE_START_TEST (ACE_TEXT ("Recursive_Mutex_Test"));
#if defined (ACE_HAS_THREADS)
if (argc > 1)
{
n_threads = ACE_OS::atoi (argv[1]);
}
ACE_TEST_MUTEX rm;
#if !defined (ACE_HAS_WTHREADS)
// This will work for Windows, too, if ACE_TEST_MUTEX is
// ACE_Recursive_Thread_Mutex instead of ACE_Process_Mutex.
nesting_level_supported =
(rm.get_nesting_level () != -1 || errno != ENOTSUP);
#endif /* !ACE_HAS_WTHREADS */
ACE_Thread_Manager::instance ()->spawn_n (n_threads,
ACE_THR_FUNC (recursion_worker),
(void *) &rm);
ACE_Thread_Manager::instance ()->wait ();
ACE_Thread_Manager::instance ()->spawn_n (n_threads,
ACE_THR_FUNC (timed_worker),
(void *) &rm);
ACE_Thread_Manager::instance ()->wait ();
#else
ACE_UNUSED_ARG (argc);
ACE_UNUSED_ARG (argv);
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("ACE doesn't support recursive process ")
ACE_TEXT ("mutexes on this platform\n")));
#endif /* ACE_HAS_THREADS */
ACE_END_TEST;
return 0;
}
|