1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
//=============================================================================
/**
* @file Unbounded_Set_Test.cpp
*
* $Id: Unbounded_Set_Test.cpp 93638 2011-03-24 13:16:05Z johnnyw $
*
* This test illustrates the use of ACE_Unbounded_Set.
* No command line arguments are needed to run the test.
*
*
* @author Rudolf Weber <rfweber@tesionmail.de>
* @author ace/tests integration <Oliver.Kellogg@sysde.eads.net>
*/
//=============================================================================
#include "test_config.h"
#include <ace/Unbounded_Set.h>
#include <ace/Auto_Ptr.h>
#include <ace/SString.h>
struct MyNode
{
unsigned k;
MyNode () : k (0) {}
MyNode (int pk) : k (pk) {}
MyNode (const MyNode& o) : k (o.k) {}
bool operator== (const MyNode& o) const { return (k == o.k); }
};
size_t count_const_set (const ACE_Unbounded_Set<MyNode>& cubs)
{
size_t number_of_elements = 0;
for (ACE_Unbounded_Set<MyNode>::const_iterator ci (cubs); !ci.done(); ci++)
number_of_elements++;
return number_of_elements;
}
int
run_main (int, ACE_TCHAR *[])
{
int r;
int retval = 0;
unsigned k;
MyNode node (1);
ACE_START_TEST (ACE_TEXT ("Unbounded_Set_Test"));
ACE_Unbounded_Set<MyNode> ubs;
if (ubs.size () != 0)
{
ACE_ERROR ((LM_ERROR, "Error: ubs.size () != 0\n"));
retval = -1;
}
if (!ubs.is_empty ())
{
ACE_ERROR ((LM_ERROR, "Error: !ubs.is_empty ()\n"));
retval = -1;
}
// Insert a value. Immediately remove it.
r = ubs.insert (node);
if (r != 0)
{
ACE_ERROR ((LM_ERROR, "Error: r != 0\n"));
retval = -1;
}
if (ubs.size () != 1)
{
ACE_ERROR ((LM_ERROR, "Error: ubs.size () != 1\n"));
retval = -1;
}
r = ubs.remove (node);
if (r != 0)
{
ACE_ERROR ((LM_ERROR, "Error: r != 0\n"));
retval = -1;
}
if (ubs.size () != 0)
{
ACE_ERROR ((LM_ERROR, "Error: ubs.size () != 0\n"));
retval = -1;
}
// Insert several different values.
for (node.k = 1; node.k <= 5; node.k++)
{
r = ubs.insert (node);
if (r != 0)
{
ACE_ERROR ((LM_ERROR, "Error: r != 0\n"));
retval = -1;
}
if (ubs.size () != node.k)
{
ACE_ERROR ((LM_ERROR, "Error: ubs.size () != node.k\n"));
retval = -1;
}
}
// Test assigment of sets.
// To do that, we also test some of the iterator methods.
typedef ACE_Unbounded_Set<MyNode> MySet;
MySet ubs2 = ubs; // Test a typedef of a set.
if (ubs2.size() != ubs.size())
{
ACE_ERROR ((LM_ERROR, "Error: ubs2.size() != ubs.size()\n"));
retval = -1;
}
{
MySet::ITERATOR it1 (ubs);
MySet::iterator it2 (ubs2);
for (k = 1; k <= 5; k++)
{
if (it1.done ())
{
ACE_ERROR ((LM_ERROR, "Error: it1.done ()\n"));
retval = -1;
}
if (it2.done ())
{
ACE_ERROR ((LM_ERROR, "Error: it2.done ()\n"));
retval = -1;
}
MyNode n1 = *it1;
MyNode n2 = *it2;
if (!(n1 == n2))
{
ACE_ERROR ((LM_ERROR, "Error: !(n1 == n2)\n"));
retval = -1;
}
it1.advance ();
it2.advance ();
}
if (!it1.done ())
{
ACE_ERROR ((LM_ERROR, "Error: !it1.done ()\n"));
retval = -1;
}
if (!it2.done ())
{
ACE_ERROR ((LM_ERROR, "Error: !it2.done ()\n"));
retval = -1;
}
// Verify that a set may be emptied while an iterator on the set is
// in-scope but inactive:
ubs.reset ();
// Restore original set from ubs2
ubs = ubs2;
}
// Selective deletion of elements and element retrieval.
{
MySet::iterator it (ubs2);
int deleted = 0;
while (! it.done ())
{
MyNode n = *it;
it.advance (); /* Being friendly here: Move the iterator on
so that element removal does not interfere
with the current iterator position.
The less friendly case, removal under the
current iterator position, is below. */
if (n.k % 2 == 1)
{
r = ubs2.remove (n);
deleted++;
}
}
if (ubs2.size () + deleted != ubs.size())
{
ACE_ERROR ((LM_ERROR, "Error: ubs2.size () + deleted != ubs.size()\n"));
retval = -1;
}
MyNode node2 (2);
if (ubs2.find (node2) != 0)
{
ACE_ERROR ((LM_ERROR, "Error: ubs2.find (node2) != 0\n"));
retval = -1;
}
MyNode node3 (3);
if (ubs2.find (node3) == 0)
{
ACE_ERROR ((LM_ERROR, "Error: ubs2.find (node3) == 0\n"));
retval = -1;
}
ubs2.insert (node3);
}
size_t s = count_const_set (ubs);
if (s != ubs.size ())
{
ACE_ERROR ((LM_ERROR, "Error: s != ubs.size ()\n"));
retval = -1;
}
ACE_Unbounded_Set<MyNode> ubs_insert;
MyNode node4 (4);
if (ubs_insert.insert (node4) != 0)
{
ACE_ERROR ((LM_ERROR, "Error: insert node4 failed\n"));
retval = -1;
}
if (ubs_insert.insert (node4) != 1)
{
ACE_ERROR ((LM_ERROR, "Error: insert node4 didn't return 1\n"));
retval = -1;
}
ACE_END_TEST;
return retval;
}
|