1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/acetest.R
\name{acetest}
\alias{acetest}
\alias{summary.acetest}
\alias{print.acetest}
\alias{plot.acetest}
\title{ACE permutation test of independence}
\usage{
acetest(x, y = NULL, nperm = 999, ...)
\method{summary}{acetest}(object, ..., digits)
\method{print}{acetest}(x, ...)
\method{plot}{acetest}(
x,
acol = "blue",
xlim = c(min(x$tp), max(c(x$tp, ceiling(x$ace * 10)/10))),
col = "black",
breaks = 100,
main = "ACE Correlation Permutations",
xlab = bquote(rho(.(x$xname), .(x$yname))),
lwd = 2,
...
)
}
\arguments{
\item{x}{a numeric vector, or a matrix or data frame with two columns. The
first column is the 'y' and the second column is the 'x' when
calling \code{\link{ace}}.}
\item{y}{a vector with same length as x. Default is NULL.}
\item{nperm}{number of permutations. Default is 999.}
\item{...}{additional arguments to pass to \code{cor}.}
\item{object}{S3 object of test results to dispatch.}
\item{digits}{Number of significant digits to round for summary.}
\item{acol}{for plot; color of the point estimate of correlation}
\item{xlim}{for plot;xlimit of histogram}
\item{col}{for plot;color of histogram bars}
\item{breaks}{for plot;number of breaks. Default to 100.}
\item{main}{for plot; main title of plot}
\item{xlab}{for plot; x-axis label}
\item{lwd}{for plot; line width of point estimate}
}
\value{
a list containing the following:
\itemize{
\item{\code{ace}} The value of the test statistic.
\item{\code{pval}} The *p*-value of the test.
}
}
\description{
Performs a permutation test of independence or association. The
alternative hypothesis is that x and y are dependent.
Code authored by Bernhard Klar, Shawn Garbett.
}
\examples{
n <- 200
z <- matrix(rnorm(2*n), n) / sqrt(rchisq(n, 2)/2)
x <- z[,2]; y <- z[,1]
cor.test(x, y, method="spearman")
acetest(x, y)
plot(acetest(z))
}
\references{
Holzmann, H., Klar, B. 2025. "Lancaster correlation - a new dependence measure
linked to maximum correlation". Scandinavian Journal of Statistics.
52(1):145-169 <doi:10.1111/sjos.12733>
}
\seealso{
\code{\link{cor}}
}
|