1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
Subroutine get_lambda(Grad_K1CM, Vec_K1C, Vec_K1C_On_Evecs,
& Grad_K1C_On_Evecs, Hess_K1C, Evecs,
& AtmMass, Vec_K1C_Updated, Work,
& Coords_K1C, Stride, Delta, Nreals,
& Hess_Eval_Tol, Lamsearch_Tol,
& Binsearch_Tol)
Implicit Double Precision (A-H, O-Z)
C
Double Precision L_bound, Lamsearch_Tol, Mass, Lamda
C
Logical lamda_found, Bracket_end
C
Dimension Grad_K1CM(3*Nreals), Hess_K1C(3*Nreals, 3*Nreals),
& AtmMass(Nreals), Evecs(3*Nreals, 3*Nreals),
& Vec_K1C(3*Nreals), Vec_K1C_On_Evecs(3*Nreals),
& Grad_K1C_On_Evecs(3*Nreals), Work(27*Nreals*Nreals),
& Vec_K1C_Updated(3*Nreals), Coords_K1C(3*Nreals)
C
C Mass weigh the Hessian and obtain the eigenvectors.
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The Hessian"
Call output(Hess_K1C, 1, 3*Nreals, 1, 3*Nreals, 3*Nreals,
& 3*Nreals, 1)
#endif
Call Dcopy(9*Nreals*Nreals, Hess_K1C, 1,
& Work(18*nreals*nreals + 1), 1)
C
Do Ideg = 1, 3*Nreals
Do Jdeg = 1, 3*Nreals
Mass = DSQRT(AtmMass(1+(Ideg-1)/3)*AtmMass(1+(Jdeg-1)/3))
IF (Mass .lt. 1.0D-3) Then
Hess_K1C(Ideg, Jdeg) = 0.0D0
Else
Hess_K1C(Ideg, Jdeg) = Hess_K1C(Ideg, Jdeg)/Mass
Endif
Enddo
Enddo
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The mass weighted Hessian"
Call output(Hess_K1C, 1, 3*Nreals, 1, 3*Nreals, 3*Nreals,
& 3*Nreals, 1)
#endif
C
C Project the mass-weighted Hessian and diagonalize to define normal
C modes.
Call Projec_FC(Coords_K1C, Hess_K1C, AtmMass, Grad_K1CM, Work,
& WorK(9*Nreals*Nreals+1), 1.0D-8, Nreals, .True.,
& .True., .False.)
C
#ifdef _DEBUG_LVL0
NX = 3*Nreals
Write(6,"(a)") "The projected Hessian"
CALL OUTPUT(Hess_K1C, 1, NX, 1, Nx, Nx, Nx, 1)
#endif
Call Eig(Hess_K1C, Evecs, 3*Nreals, 3*Nreals, 0)
C
#ifdef _DEBUG_LVL0
Write(6,*)
NX = 3*Nreals
Write(6,"(a)") "The eigen vectors of the projected Hessian"
CALL OUTPUT(Evecs, 1, NX, 1, Nx, Nx, Nx, 1)
Write(6,"(a)") "The eigenvalues of the projected Hessian"
Write(6, "(4F17.13)") (Hess_K1C(I,I), I=1, NX)
#endif
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "@-get_lambda Grad_K1CM (ZMAT order)"
Write(6, "(3F17.13)") (Grad_K1CM(i), i=1,3*Nreals)
Write(6,*)
Write(6,*) "@-get_lambda VEC_K1C (ZMAT order)"
Write(6, "(3F17.13)") (Vec_K1C(i), i=1,3*Nreals)
#endif
C
C Gradient along the eigenvectors of the Hessian
C
Do Imode = 1, 3*Nreals
Grad_K1C_on_Evecs(Imode) = Ddot(3*Nreals, Grad_K1CM, 1,
& Evecs(1, Imode), 1)
Vec_K1C_on_Evecs(Imode) = Ddot(3*Nreals, Vec_K1C, 1,
& Evecs(1, Imode), 1)
C
If (Dabs(Hess_K1C(Imode, Imode)) .LT. Hess_Eval_Tol) Then
Grad_K1C_on_Evecs(Imode) = 0.0D0
Vec_K1C_on_Evecs(Imode) = 0.0D0
Hess_K1C(Imode, Imode) = 0.0D0
Endif
C
Enddo
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The position and gradient vectors along e-vecs"
Write(6, "(F17.13)") (Grad_K1C_on_EvecS(I), I=1, 3*Nreals)
Write(6,*)
Write(6, "(F17.13)") (Vec_K1C_on_EvecS(I), I=1, 3*Nreals)
#endif
C
Imode = 3*Nreals
Eval_min = Hess_K1C(Imode, Imode)
Do While (Hess_K1C(Imode, Imode) .NE. 0.0D0 .OR. Imode .GT. 0)
Imode = Imode - 1
If (Hess_K1C(Imode, Imode) .NE. 0.0D0) Eval_min =
& Hess_K1C(Imode, Imode)
Enddo
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The lowest eiegnvalue of hess. and the tolerance"
Write(6, "(a,F17.13,a,F13.10)") "Eval_min =", Eval_min,
& " Hess_Eval_Tol =",Hess_Eval_Tol
#endif
C
C The solution to Eq. 26 im JPC, vol. 94, 5525, 1990 must be
C lower than the lowst eigenvalue of the Hessian. Another words
C Lambda < Eval_min.
C
halfs = 0.50D0*Stride
L_bound = Eval_min - (2.0D0)*Delta
U_bound = Eval_min - (1/2.0D0)*Delta
Halfs2 = halfs*halfs
niter = 1
Lbound_Tol = max((Eval_min)*Lamsearch_Tol,
& 10.0D0*Lamsearch_Tol)
Ubound_Tol = max(1.0D03, Abs(Eval_min))
Ubound_Tol = 1.0D03*Ubound_Tol
C
#ifdef _DEBUG_LVLM1
Write(6,*) "Lambda iterations"
Write(6,*) "Starting lower and upper limits"
Write(6,"(2F17.13)") L_bound, U_bound
#endif
C
Bracket_end = .FALSE.
Do while (.NOT. Bracket_end)
F_Lowr = 0.0D0
F_Uppr = 0.0D0
C
Do Imode = 1, 3*Nreals
Dnumer = Hess_K1C(Imode, Imode)*Vec_K1C_on_Evecs(Imode) -
& Grad_K1C_on_Evecs(Imode)
Denomi = Hess_K1C(Imode, Imode) - L_bound
F_Lowr = Dnumer**2/Denomi**2 + F_Lowr
Denomi = Hess_K1C(Imode, Imode) - U_bound
F_Uppr = Dnumer**2/Denomi**2 + F_Uppr
Enddo
#ifdef _DEBUG_LVLM1
Write(6,*) "The F_Lowr and F_Uppr"
Write(6,"(2F17.13)") F_Lowr, F_Uppr
#endif
C
F_Lowr = F_lowr - Halfs2
F_Uppr = F_Uppr - Halfs2
If (F_Lowr*F_Uppr .LT. 0.0D0) Then
Bracket_end = .TRUE.
Go to 10
Endif
C
niter = niter + 1
L_bound = Eval_min - (2.0D0)**niter*Delta
U_bound = Eval_min - (1.0D0/(2.0D0)**niter)*Delta
c
#ifdef _DEBUG_LVLM1
Write(6,*) "Lower and upper limits during its."
Write(6,"(2F17.13)") L_bound, U_bound
#endif
If (L_bound .LT. -Ubound_Tol .AND. ABS(Eval_min-U_bound) .LT.
& Lbound_Tol) Then
L_bound = -Ubound_Tol
U_bound = Eval_min - Lbound_Tol
Write(6, "(a,a)") "@-get_lambda Bracketing for lambda",
& "is failed"
Call Errex
Endif
Enddo
C
10 Continue
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The upper and lower bound for lambda"
Write(6, "(a,F17.13,a,F17.13)") " L_bound =", L_bound,
& " U_bound =",U_bound
#endif
C
C The binary search portion to extract the value in the range
C L_bound - U_bound.
C
Tmp_lamda = 0.0D0
Lambda_found = .False.
Niter = 0
Do while (.Not. lamda_found)
F_Lowr = 0.0D0
F_Uppr = 0.0D0
F_Midl = 0.0D0
Lamda = 0.50D0*(L_bound + U_bound)
#ifdef _DEBUG_LVLM1
Write(6,*) "The starting lambda"
Write(6, "(F17.13)") lamda
#endif
Do Imode = 1, 3*Nreals
Dnumer = Hess_k1C(Imode, Imode)*Vec_K1C_on_Evecs(Imode) -
& Grad_K1C_on_Evecs(Imode)
Denomi = Hess_K1C(Imode, Imode) - L_bound
F_Lowr = Dnumer**2/Denomi**2 + F_Lowr
Denomi = Hess_K1C(Imode, Imode) - U_bound
F_Uppr = Dnumer**2/Denomi**2 + F_Uppr
Denomi = Hess_K1C(Imode, Imode) - Lamda
F_Midl = Dnumer**2/Denomi**2 + F_Midl
Enddo
#ifdef _DEBUG_LVLM1
Write(6,*) "The FL, FU, FM during iterations"
Write(6,"(3F17.13)") F_Lowr, F_Uppr, F_Midl
#endif
F_Lowr = F_lowr - Halfs2
F_Uppr = F_Uppr - Halfs2
F_Midl = F_midl - Halfs2
C
If (Abs(Tmp_lamda -lamda) .LT. Binsearch_Tol)
& lamda_found = .True.
Niter = Niter + 1
If (Niter .gt. 1000) Then
Write(6, "(a,a)") "@-Get_lambda: The binary search",
& " for lambda failed!"
Call Errex
Endif
C
Tmp_lamda = Lamda
C
#ifdef _DEBUG_LVLM1
Write(6,*) "The FL, FU, FM post halfs2"
Write(6,"(3F17.13)") F_Lowr, F_Uppr, F_Midl
#endif
if (F_Lowr*F_Midl .LT. 0.0D0) U_bound = Lamda
If (F_Uppr*F_Midl .LT. 0.0D0) L_bound = Lamda
C
#ifdef _DEBUG_LVLM1
Write(6,*) "The L_bound and U_bound during iterations"
Write(6,"(2F17.13)") L_bound, U_bound
#endif
Enddo
If (Lamda .GT. Eval_min) Then
Write(6, "(a,a,2F10.5)")
& "@-Get_lambda: Warning, lambda is grater than the lowest",
& "eigenvalue", lamda, Eval_min
Call Errex
Endif
If (Abs(Lamda - Eval_min) .LT. Binsearch_Tol) Then
Write(6, "(a,a,F10.5)") "@-Get_lambda: Lamda is too close",
& "to the lowest eigenvalue", Lamda,
& Eval_min
Call Errex
Endif
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The value of lambda after binary search"
Write(6, "(a,F17.13)") " Lambda =", Lamda
#endif
C
C Make the Newton-Raphson Step
C
Call Dzero(Vec_K1C_Updated, 3*Nreals)
Do Imode = 1, 3*Nreals
If (Hess_K1C(Imode, Imode) .EQ. 0.0D0) Then
Do Jmode = 1, 3*Nreals
Vec_K1C_Updated(Jmode) = Vec_K1C_Updated(Jmode) +
& Hess_K1C(Imode, Imode)*
& Evecs(Jmode,Imode)
Enddo
Else
Denomi = (Lamda*Vec_K1C_on_Evecs(Imode) -
& Grad_K1C_on_Evecs(Imode))
Dnumer = Hess_K1C(Imode, Imode) - Lamda
Do Jmode = 1, 3*Nreals
Vec_K1C_Updated(Jmode) = Vec_K1C_Updated(Jmode) +
& (Denomi/Dnumer)*
& Evecs(Jmode,Imode)
Enddo
Endif
Enddo
C
#ifdef _DEBUG_LVL0
Write(6,*)
Write(6,*) "The M. W. updated vector (Vec_K1C_Updated)"
Write(6,"(3F17.13)") (Vec_K1C_Updated(i), i=1,3*Nreals)
#endif
C
C Eleminate mass weighing from the updated vector.
C
Ioff = 0
Do Iatom = 1, Nreals
Do Ixyz = 1, 3
Ioff = Ioff + 1
Vec_K1C_updated(Ioff) = Vec_K1C_updated(Ioff)/
& Dsqrt(AtmMass(Iatom))
Enddo
Enddo
C
Call Dcopy(9*Nreals*Nreals, Work(18*Nreals*Nreals+1), 1,
& Hess_K1C, 1)
C
#ifdef _DEBUG_LVLM1
Write(6,*)
Write(6,*) "The restored Hessian"
Call output(Hess_K1C, 1, 3*Nreals, 1, 3*Nreals, 3*Nreals,
& 3*Nreals, 1)
#endif
C
Return
End
|