1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
Subroutine projec_FC(Coords, Hess, AtmMass, Grad, Hess_project,
& Work, Threshold, Nreals, Move_CMass,
& Proj_rots, Proj_grads)
C
Implicit Double Precision (A-H, O-Z)
C
Double Precision MO_Inertia(3,3)
Logical Proj_rots, Proj_grads, Move_CMass
Integer L_Index, R_Index
C
Dimension Coords(3*Nreals), Grad(3*Nreals), AtmMass(Nreals),
& Hess(3*Nreals, 3*Nreals), Hess_Project(3*Nreals,
& 3*Nreals), Work(3*Nreals, 3*Nreals), Asym_ten(3,3,3),
& CM(3), Center_Mass(3)
Data Asym_ten/ 0.0D+00, 0.0D+00, 0.0D+00,
& 0.0D+00, 0.0D+00, -1.0D+00,
& 0.0D+00, 1.0D+00, 0.0D+00,
& 0.0D+00, 0.0D+00, 1.0D+00,
& 0.0D+00, 0.0D+00, 0.0D+00,
& -1.0D+00, 0.0D+00, 0.0D+00,
& 0.0D+00, -1.0D+00, 0.0D+00,
& 1.0D+00, 0.0D+00, 0.0D+00,
& 0.0D+00, 0.0D+00, 0.0D+00 /
C
C Normalize the gradinet vector.
C
If (Proj_grads) Then
Grad_sqr = Ddot(3*Nreals, Grad, 1, Grad, 1)
If (Grad_sqr .GT. Threshold) Call Normal(Grad, 3*Nreals)
Endif
C
Write(6,*)
Write(6,"(a)") "@-Projec_FC At enetry the Coords and grads"
Write(6, "(3F17.13)") (Coords(i),i=1,3*Nreals)
Write(6,*)
Write(6, "(3F17.13)") (Grad(i),i=1,3*Nreals)
C
C Move to the center of Mass coordinate system.
C
If (Move_CMass) Then
Call Dzero(CM, 3)
TotMass = 0.0D0
Do Iatoms = 1, Nreals
Ioff = 3*(Iatoms - 1)
TotMass = TotMass + AtmMass(Iatoms)
Do Ixyz = 1, 3
CM(Ixyz) = Coords(Ioff + Ixyz)*AtmMass(Iatoms) +
& CM(Ixyz)
Enddo
Enddo
C
Do Ixyz = 1, 3
If (TotMass .GT. Threshold) Then
Center_Mass(IxYz) = CM(Ixyz)/TotMass
Else
Write(6, "(a)") "@-Project_FC Zero total mass"
Call Errex
Endif
Enddo
C
Do Iatoms = 1, Nreals
Ioff = 3*(Iatoms - 1)
Do Ixyz = 1, 3
Coords(Ioff + Ixyz) = Coords(Ioff + Ixyz) -
& Center_Mass(Ixyz)
Enddo
Enddo
Endif
C
Write(6,*)
Write(6,"(a)") "@-Projec_FC The center of mass Coords"
Write(6, "(3F17.13)") (Coords(i),i=1,3*Nreals)
C
C compute the inverse of inertia matrix.
c
Call CalMOI(NReals, Coords, AtmMass, MO_Inertia)
Write(6,*)
Write(6,"(a)") "@-Projec_FC the moments of inertia matrix"
Call output(MO_Inertia, 1, 3, 1, 3, 3, 3,1)
Call Minv(MO_Inertia, 3, 3, Work, Det, 1.0D-8, 0, 1)
C
C Mass weigh the incomming Cartesians
C
Ioff = 1
Do Iatoms = 1, Nreals
Sqrtmass = Dsqrt(AtmMass(Iatoms))
Do Ixyz = 1, 3
Coords(Ioff) = Coords(Ioff)*Sqrtmass
Ioff = Ioff + 1
Enddo
Enddo
C
Write(6,*)
Write(6,"(a)") "@-Projec_FC Mass weighted center of mass Coords"
Write(6, "(3F17.13)") (Coords(i),i=1,3*Nreals)
Write(6,*)
Write(6,"(a)") "@-Projec_FC Inv. of the moms. of inertia matrix"
Call output(MO_Inertia, 1, 3, 1, 3, 3, 3,1)
C
C Build the Hessian projector See, Miller, Handy and Adams, JCP,
C 72, 99, (1980).
C
Do Iatms = 1, Nreals
Ioff = 3*(Iatms - 1)
CSSS Itmp = Max(3*(Iatms - 1), 6*(Iatms -1)-3*Nreals)
Do Jatms = 1, Iatms
Joff = 3*(Jatms - 1)
CSSS Jtmp = Max(3*(Jatms - 1), 6*(Jatms -1)-3*Nreals)
Do Iz = 1, 3
L_index = Ioff + Iz
CSSS Itmp_L = Itmp + Iz
Jz_end = 3
If (Iatms .EQ. Jatms) Jz_end = Iz
C
Do Jz = 1, Jz_end
R_index = Joff + Jz
CSSS Jtmp_R = Jtmp + JZ
Sum = 0.0D0
C
If (Proj_rots) Then
Do Ix = 1, 3
Do Iy = 1, 3
C
If (Asym_ten(Ix, Iy, Iz) .NE. 0.0D0)
& Then
Do Jx = 1, 3
Do Jy = 1, 3
If (Asym_ten(Jx, Jy, Jz) .NE.
& 0.0D0) Then
Sum = Sum +
& Coords(Ioff + IY)*
& Coords(Joff + Jy)*
& MO_inertia(Ix, Jx)*
& Asym_ten(Ix, Iy, Iz)*
& Asym_ten(Jx, Jy, Jz)
Endif
Enddo
Enddo
Endif
Enddo
Enddo
Endif
C
Hess_project(L_index, R_index) = Sum
C
If (Proj_grads) Hess_project(L_index, R_index) =
& Hess_project(L_index, R_index) +
& Grad(R_Index)*Grad(L_index)
C
If (Iz .EQ. Jz) Then
Hess_project(L_index, R_index) =
& Hess_project(L_index, R_index) +
& Dsqrt(AtmMass(Iatms)*AtmMass(Jatms))/
& Totmass
Endif
C
Enddo
Enddo
C
Enddo
Enddo
C
C
C Build the projector (I - P)
C
Do Jdeg = 1, 3*Nreals
Do Ideg = 1, Jdeg
Hess_project(Jdeg, Ideg) = -Hess_project(Jdeg, Ideg)
If (Ideg .Eq. Jdeg) Hess_project(Jdeg, Ideg) = 1.0D0 +
& Hess_project(Jdeg, Ideg)
If (Dabs(Hess_project(Jdeg, Ideg)) .LT. Threshold)
& Hess_project(Jdeg, Ideg) = 0.0D0
Hess_project(Ideg, Jdeg) = Hess_project(Jdeg, Ideg)
Enddo
Enddo
C
C
NX = 3*Nreals
Write(6,*)
Write(6,"(a)") "The Hessian projector:(I-P)"
CALL OUTPUT(Hess_project, 1, NX, 1, Nx, Nx, Nx, 1)
C
C
C Project the Hessian (I - P)H(I - P)
C
Call Xgemm("N", "N", 3*Nreals, 3*Nreals, 3*Nreals, 1.0D0,
& Hess_project, 3*Nreals, Hess, 3*Nreals, 0.0D0,
& Work, 3*Nreals)
C
Call Xgemm("N", "N", 3*Nreals, 3*Nreals, 3*Nreals, 1.0D0,
& Work, 3*Nreals, Hess_project, 3*Nreals, 0.0D0,
& Hess, 3*Nreals)
C
Return
End
|