File: erd__2d_pq_integrals.f

package info (click to toggle)
aces3 3.0.6-7
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 82,460 kB
  • sloc: fortran: 225,647; ansic: 20,413; cpp: 4,349; makefile: 953; sh: 137
file content (378 lines) | stat: -rw-r--r-- 13,676 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
C  Copyright (c) 2003-2010 University of Florida
C
C  This program is free software; you can redistribute it and/or modify
C  it under the terms of the GNU General Public License as published by
C  the Free Software Foundation; either version 2 of the License, or
C  (at your option) any later version.

C  This program is distributed in the hope that it will be useful,
C  but WITHOUT ANY WARRANTY; without even the implied warranty of
C  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C  GNU General Public License for more details.

C  The GNU General Public License is included in this distribution
C  in the file COPYRIGHT.
         SUBROUTINE  ERD__2D_PQ_INTEGRALS
     +
     +                    ( SHELLP,SHELLQ,
     +                      NGQEXQ,
     +                      WTS,
     +                      B00,B01,B10,
     +                      C00X,C00Y,C00Z,
     +                      D00X,D00Y,D00Z,
     +                      CASE2D,
     +
     +                               INT2DX,
     +                               INT2DY,
     +                               INT2DZ )
     +
C------------------------------------------------------------------------
C  OPERATION   : ERD__2D_PQ_INTEGRALS
C  MODULE      : ELECTRON REPULSION INTEGRALS DIRECT
C  MODULE-ID   : ERD
C  SUBROUTINES : none
C  DESCRIPTION : This operation calculates a full table of 2D PQ X,Y,Z
C                integrals using the Rys vertical recurrence scheme
C                VRR explained below.
C
C                The Rys weight is multiplied to the 2DX PQ integral
C                to reduce overall FLOP count. Note, that the Rys weight
C                factor needs to be introduced only three times for the
C                starting 2DX PQ integrals for the recurrence scheme,
C                namely to the (0,0), (1,0) and (0,1) elements. The
C                weight factor is then automatically propagated
C                through the vertical transfer equations (see below).
C                The recurrence scheme VRR is due to Rys, Dupuis and
C                King, J. Comp. Chem. 4, p.154-157 (1983).
C
C
C                   INT2D (0,0) = 1.D0    (* WEIGHT for the 2DX case)
C                   INT2D (1,0) = C00     (* WEIGHT for the 2DX case)
C                   INT2D (0,1) = D00     (* WEIGHT for the 2DX case)
C
C                   For I = 1,...,SHELLP-1
C                       INT2D (I+1,0) = I * B10 * INT2D (I-1,0)
C                                         + C00 * INT2D (I,0)
C                   For K = 1,...,SHELLQ-1
C                       INT2D (0,K+1) = K * B01 * INT2D (0,K-1)
C                                         + D00 * INT2D (0,K)
C                   For I = 1,...,SHELLP
C                       INT2D (I,1)   = I * B00 * INT2D (I-1,0)
C                                         + D00 * INT2D (I,0)
C                   For K = 2,...,SHELLQ
C                       INT2D (1,K)   = K * B00 * INT2D (0,K-1)
C                                         + C00 * INT2D (0,K)
C                   For K = 2,...,SHELLQ
C                   For I = 2,...,SHELLP
C                       INT2D (I,K)   = (I-1) * B10 * INT2D (I-2,K)
C                                         + K * B00 * INT2D (I-1,K-1)
C                                             + C00 * INT2D (I-1,K)
C
C
C                The 2D PQ integrals are calculated for all roots (info
C                already present in transmitted VRR coefficients!) and
C                for all exponent quadruples simultaneously and placed
C                into a 3-dimensional array.
C
C
C                  Input:
C
C                    SHELLx      =  maximum shell type for electrons
C                                   1 and 2 (x = P,Q)
C                    NGQEXQ      =  product of # of gaussian quadrature
C                                   points times exponent quadruplets
C                    WTS         =  all quadrature weights
C                    B00,B01,B10 =  VRR expansion coefficients
C                                   (cartesian coordinate independent)
C                    C00x,D00x   =  cartesian coordinate dependent
C                                   VRR expansion coefficients
C                                   (x = X,Y,Z)
C                    CASE2D      =  logical flag for simplifications
C                                   in 2D integral evaluation for
C                                   low quantum numbers
C
C
C                  Output:
C
C                    INT2Dx      =  all 2D PQ integrals for each
C                                   cartesian component (x = X,Y,Z)
C
C
C  AUTHOR      : Norbert Flocke
C------------------------------------------------------------------------
C
C
C
C             ...include files and declare variables.
C
C
         IMPLICIT  NONE

         INTEGER   CASE2D
         INTEGER   I,K,N
         INTEGER   I1,I2,K1,K2
         INTEGER   NGQEXQ
         INTEGER   SHELLP,SHELLQ

         DOUBLE PRECISION  B0,B1
         DOUBLE PRECISION  F,F1,F2
         DOUBLE PRECISION  ONE
         DOUBLE PRECISION  WEIGHT

         DOUBLE PRECISION  B00  (1:NGQEXQ)
         DOUBLE PRECISION  B01  (1:NGQEXQ)
         DOUBLE PRECISION  B10  (1:NGQEXQ)
         DOUBLE PRECISION  C00X (1:NGQEXQ)
         DOUBLE PRECISION  C00Y (1:NGQEXQ)
         DOUBLE PRECISION  C00Z (1:NGQEXQ)
         DOUBLE PRECISION  D00X (1:NGQEXQ)
         DOUBLE PRECISION  D00Y (1:NGQEXQ)
         DOUBLE PRECISION  D00Z (1:NGQEXQ)
         DOUBLE PRECISION  WTS  (1:NGQEXQ)

         DOUBLE PRECISION  INT2DX (1:NGQEXQ,0:SHELLP,0:SHELLQ)
         DOUBLE PRECISION  INT2DY (1:NGQEXQ,0:SHELLP,0:SHELLQ)
         DOUBLE PRECISION  INT2DZ (1:NGQEXQ,0:SHELLP,0:SHELLQ)

         PARAMETER  (ONE = 1.D0)
C
C
C------------------------------------------------------------------------
C
C
C             ...jump according to the 4 different cases that can arise:
C
C                  P-shell = s- or higher angular momentum
C                  Q-shell = s- or higher angular momentum
C
C                each leading to simplifications in the VRR formulas.
C                The case present has been evaluated outside this
C                routine and is transmitted via argument.
C
C
         GOTO (1,3,3,2,4,4,2,4,4) CASE2D
C
C
C             ...the case P = s-shell and Q = s-shell.
C
C
    1    DO 100 N = 1,NGQEXQ
            INT2DX (N,0,0) = WTS (N)
            INT2DY (N,0,0) = ONE
            INT2DZ (N,0,0) = ONE
  100    CONTINUE

         RETURN
C
C
C             ...the cases P = s-shell and Q >= p-shell.
C                Evaluate I=0 and K=0,1.
C
C
    2    DO 200 N = 1,NGQEXQ
            WEIGHT = WTS (N)
            INT2DX (N,0,0) = WEIGHT
            INT2DX (N,0,1) = D00X (N) * WEIGHT
            INT2DY (N,0,0) = ONE
            INT2DY (N,0,1) = D00Y (N)
            INT2DZ (N,0,0) = ONE
            INT2DZ (N,0,1) = D00Z (N)
  200    CONTINUE
C
C
C             ...evaluate I=0 and K=2,SHELLQ (if any).
C
C
         F = ONE
         DO 210 K = 2,SHELLQ
            K1 = K - 1
            K2 = K - 2
            DO 212 N = 1,NGQEXQ
               B1 = F * B01 (N)
               INT2DX (N,0,K) =        B1 * INT2DX (N,0,K2)
     +                         + D00X (N) * INT2DX (N,0,K1)
               INT2DY (N,0,K) =        B1 * INT2DY (N,0,K2)
     +                         + D00Y (N) * INT2DY (N,0,K1)
               INT2DZ (N,0,K) =        B1 * INT2DZ (N,0,K2)
     +                         + D00Z (N) * INT2DZ (N,0,K1)
  212       CONTINUE
            F = F + ONE
  210    CONTINUE

         RETURN
C
C
C             ...the cases P >= p-shell and Q = s-shell.
C                Evaluate I=0,1 and K=0.
C
C
    3    DO 300 N = 1,NGQEXQ
            WEIGHT = WTS (N)
            INT2DX (N,0,0) = WEIGHT
            INT2DX (N,1,0) = C00X (N) * WEIGHT
            INT2DY (N,0,0) = ONE
            INT2DY (N,1,0) = C00Y (N)
            INT2DZ (N,0,0) = ONE
            INT2DZ (N,1,0) = C00Z (N)
  300    CONTINUE
C
C
C             ...evaluate I=2,SHELLP (if any) and K=0.
C
C
         F = ONE
         DO 310 I = 2,SHELLP
            I1 = I - 1
            I2 = I - 2
            DO 312 N = 1,NGQEXQ
               B1 = F * B10 (N)
               INT2DX (N,I,0) =        B1 * INT2DX (N,I2,0)
     +                         + C00X (N) * INT2DX (N,I1,0)
               INT2DY (N,I,0) =        B1 * INT2DY (N,I2,0)
     +                         + C00Y (N) * INT2DY (N,I1,0)
               INT2DZ (N,I,0) =        B1 * INT2DZ (N,I2,0)
     +                         + C00Z (N) * INT2DZ (N,I1,0)

  312       CONTINUE
            F = F + ONE
  310    CONTINUE

         RETURN
C
C
C             ...the cases P >= p-shell and Q >= p-shell.
C                Evaluate I=0,SHELLP       I=0
C                         K=0        and   K=0,SHELLQ
C
C
    4    DO 400 N = 1,NGQEXQ
            WEIGHT = WTS (N)
            INT2DX (N,0,0) = WEIGHT
            INT2DX (N,1,0) = C00X (N) * WEIGHT
            INT2DX (N,0,1) = D00X (N) * WEIGHT
            INT2DY (N,0,0) = ONE
            INT2DY (N,1,0) = C00Y (N)
            INT2DY (N,0,1) = D00Y (N)
            INT2DZ (N,0,0) = ONE
            INT2DZ (N,1,0) = C00Z (N)
            INT2DZ (N,0,1) = D00Z (N)
  400    CONTINUE

         F = ONE
         DO 410 I = 2,SHELLP
            I1 = I - 1
            I2 = I - 2
            DO 412 N = 1,NGQEXQ
               B1 = F * B10 (N)
               INT2DX (N,I,0) =        B1 * INT2DX (N,I2,0)
     +                         + C00X (N) * INT2DX (N,I1,0)
               INT2DY (N,I,0) =        B1 * INT2DY (N,I2,0)
     +                         + C00Y (N) * INT2DY (N,I1,0)
               INT2DZ (N,I,0) =        B1 * INT2DZ (N,I2,0)
     +                         + C00Z (N) * INT2DZ (N,I1,0)

  412       CONTINUE
            F = F + ONE
  410    CONTINUE

         F = ONE
         DO 414 K = 2,SHELLQ
            K1 = K - 1
            K2 = K - 2
            DO 416 N = 1,NGQEXQ
               B1 = F * B01 (N)
               INT2DX (N,0,K) =        B1 * INT2DX (N,0,K2)
     +                         + D00X (N) * INT2DX (N,0,K1)
               INT2DY (N,0,K) =        B1 * INT2DY (N,0,K2)
     +                         + D00Y (N) * INT2DY (N,0,K1)
               INT2DZ (N,0,K) =        B1 * INT2DZ (N,0,K2)
     +                         + D00Z (N) * INT2DZ (N,0,K1)
  416       CONTINUE
            F = F + ONE
  414    CONTINUE
C
C
C             ...evaluate I=1,SHELLP and K=1,SHELLQ (if any)
C                in most economical way.
C
C
         IF (SHELLQ.LE.SHELLP) THEN

             F1 = ONE
             DO 420 K = 1,SHELLQ
                K1 = K - 1
                DO 421 N = 1,NGQEXQ
                   B0 = F1 * B00 (N)
                   INT2DX (N,1,K) =        B0 * INT2DX (N,0,K1)
     +                             + C00X (N) * INT2DX (N,0,K)
                   INT2DY (N,1,K) =        B0 * INT2DY (N,0,K1)
     +                             + C00Y (N) * INT2DY (N,0,K)
                   INT2DZ (N,1,K) =        B0 * INT2DZ (N,0,K1)
     +                             + C00Z (N) * INT2DZ (N,0,K)
  421           CONTINUE
                F2 = ONE
                DO 422 I = 2,SHELLP
                   I1 = I - 1
                   I2 = I - 2
                   DO 423 N = 1,NGQEXQ
                      B0 = F1 * B00 (N)
                      B1 = F2 * B10 (N)
                      INT2DX (N,I,K) =        B0 * INT2DX (N,I1,K1)
     +                                      + B1 * INT2DX (N,I2,K)
     +                                + C00X (N) * INT2DX (N,I1,K)
                      INT2DY (N,I,K) =        B0 * INT2DY (N,I1,K1)
     +                                      + B1 * INT2DY (N,I2,K)
     +                                + C00Y (N) * INT2DY (N,I1,K)
                      INT2DZ (N,I,K) =        B0 * INT2DZ (N,I1,K1)
     +                                      + B1 * INT2DZ (N,I2,K)
     +                                + C00Z (N) * INT2DZ (N,I1,K)
  423              CONTINUE
                   F2 = F2 + ONE
  422           CONTINUE
                F1 = F1 + ONE
  420        CONTINUE

         ELSE

             F1 = ONE
             DO 430 I = 1,SHELLP
                I1 = I - 1
                DO 431 N = 1,NGQEXQ
                   B0 = F1 * B00 (N)
                   INT2DX (N,I,1) =        B0 * INT2DX (N,I1,0)
     +                             + D00X (N) * INT2DX (N,I,0)
                   INT2DY (N,I,1) =        B0 * INT2DY (N,I1,0)
     +                             + D00Y (N) * INT2DY (N,I,0)
                   INT2DZ (N,I,1) =        B0 * INT2DZ (N,I1,0)
     +                             + D00Z (N) * INT2DZ (N,I,0)
  431           CONTINUE
                F2 = ONE
                DO 432 K = 2,SHELLQ
                   K1 = K - 1
                   K2 = K - 2
                   DO 433 N = 1,NGQEXQ
                      B0 = F1 * B00 (N)
                      B1 = F2 * B01 (N)
                      INT2DX (N,I,K) =        B0 * INT2DX (N,I1,K1)
     +                                      + B1 * INT2DX (N,I,K2)
     +                                + D00X (N) * INT2DX (N,I,K1)
                      INT2DY (N,I,K) =        B0 * INT2DY (N,I1,K1)
     +                                      + B1 * INT2DY (N,I,K2)
     +                                + D00Y (N) * INT2DY (N,I,K1)
                      INT2DZ (N,I,K) =        B0 * INT2DZ (N,I1,K1)
     +                                      + B1 * INT2DZ (N,I,K2)
     +                                + D00Z (N) * INT2DZ (N,I,K1)
  433              CONTINUE
                   F2 = F2 + ONE
  432           CONTINUE
                F1 = F1 + ONE
  430        CONTINUE

         END IF
C
C
C             ...ready!
C
C
         RETURN
         END