1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
SUBROUTINE ERD__2D_PQ_INTEGRALS
+
+ ( SHELLP,SHELLQ,
+ NGQEXQ,
+ WTS,
+ B00,B01,B10,
+ C00X,C00Y,C00Z,
+ D00X,D00Y,D00Z,
+ CASE2D,
+
+ INT2DX,
+ INT2DY,
+ INT2DZ )
+
C------------------------------------------------------------------------
C OPERATION : ERD__2D_PQ_INTEGRALS
C MODULE : ELECTRON REPULSION INTEGRALS DIRECT
C MODULE-ID : ERD
C SUBROUTINES : none
C DESCRIPTION : This operation calculates a full table of 2D PQ X,Y,Z
C integrals using the Rys vertical recurrence scheme
C VRR explained below.
C
C The Rys weight is multiplied to the 2DX PQ integral
C to reduce overall FLOP count. Note, that the Rys weight
C factor needs to be introduced only three times for the
C starting 2DX PQ integrals for the recurrence scheme,
C namely to the (0,0), (1,0) and (0,1) elements. The
C weight factor is then automatically propagated
C through the vertical transfer equations (see below).
C The recurrence scheme VRR is due to Rys, Dupuis and
C King, J. Comp. Chem. 4, p.154-157 (1983).
C
C
C INT2D (0,0) = 1.D0 (* WEIGHT for the 2DX case)
C INT2D (1,0) = C00 (* WEIGHT for the 2DX case)
C INT2D (0,1) = D00 (* WEIGHT for the 2DX case)
C
C For I = 1,...,SHELLP-1
C INT2D (I+1,0) = I * B10 * INT2D (I-1,0)
C + C00 * INT2D (I,0)
C For K = 1,...,SHELLQ-1
C INT2D (0,K+1) = K * B01 * INT2D (0,K-1)
C + D00 * INT2D (0,K)
C For I = 1,...,SHELLP
C INT2D (I,1) = I * B00 * INT2D (I-1,0)
C + D00 * INT2D (I,0)
C For K = 2,...,SHELLQ
C INT2D (1,K) = K * B00 * INT2D (0,K-1)
C + C00 * INT2D (0,K)
C For K = 2,...,SHELLQ
C For I = 2,...,SHELLP
C INT2D (I,K) = (I-1) * B10 * INT2D (I-2,K)
C + K * B00 * INT2D (I-1,K-1)
C + C00 * INT2D (I-1,K)
C
C
C The 2D PQ integrals are calculated for all roots (info
C already present in transmitted VRR coefficients!) and
C for all exponent quadruples simultaneously and placed
C into a 3-dimensional array.
C
C
C Input:
C
C SHELLx = maximum shell type for electrons
C 1 and 2 (x = P,Q)
C NGQEXQ = product of # of gaussian quadrature
C points times exponent quadruplets
C WTS = all quadrature weights
C B00,B01,B10 = VRR expansion coefficients
C (cartesian coordinate independent)
C C00x,D00x = cartesian coordinate dependent
C VRR expansion coefficients
C (x = X,Y,Z)
C CASE2D = logical flag for simplifications
C in 2D integral evaluation for
C low quantum numbers
C
C
C Output:
C
C INT2Dx = all 2D PQ integrals for each
C cartesian component (x = X,Y,Z)
C
C
C AUTHOR : Norbert Flocke
C------------------------------------------------------------------------
C
C
C
C ...include files and declare variables.
C
C
IMPLICIT NONE
INTEGER CASE2D
INTEGER I,K,N
INTEGER I1,I2,K1,K2
INTEGER NGQEXQ
INTEGER SHELLP,SHELLQ
DOUBLE PRECISION B0,B1
DOUBLE PRECISION F,F1,F2
DOUBLE PRECISION ONE
DOUBLE PRECISION WEIGHT
DOUBLE PRECISION B00 (1:NGQEXQ)
DOUBLE PRECISION B01 (1:NGQEXQ)
DOUBLE PRECISION B10 (1:NGQEXQ)
DOUBLE PRECISION C00X (1:NGQEXQ)
DOUBLE PRECISION C00Y (1:NGQEXQ)
DOUBLE PRECISION C00Z (1:NGQEXQ)
DOUBLE PRECISION D00X (1:NGQEXQ)
DOUBLE PRECISION D00Y (1:NGQEXQ)
DOUBLE PRECISION D00Z (1:NGQEXQ)
DOUBLE PRECISION WTS (1:NGQEXQ)
DOUBLE PRECISION INT2DX (1:NGQEXQ,0:SHELLP,0:SHELLQ)
DOUBLE PRECISION INT2DY (1:NGQEXQ,0:SHELLP,0:SHELLQ)
DOUBLE PRECISION INT2DZ (1:NGQEXQ,0:SHELLP,0:SHELLQ)
PARAMETER (ONE = 1.D0)
C
C
C------------------------------------------------------------------------
C
C
C ...jump according to the 4 different cases that can arise:
C
C P-shell = s- or higher angular momentum
C Q-shell = s- or higher angular momentum
C
C each leading to simplifications in the VRR formulas.
C The case present has been evaluated outside this
C routine and is transmitted via argument.
C
C
GOTO (1,3,3,2,4,4,2,4,4) CASE2D
C
C
C ...the case P = s-shell and Q = s-shell.
C
C
1 DO 100 N = 1,NGQEXQ
INT2DX (N,0,0) = WTS (N)
INT2DY (N,0,0) = ONE
INT2DZ (N,0,0) = ONE
100 CONTINUE
RETURN
C
C
C ...the cases P = s-shell and Q >= p-shell.
C Evaluate I=0 and K=0,1.
C
C
2 DO 200 N = 1,NGQEXQ
WEIGHT = WTS (N)
INT2DX (N,0,0) = WEIGHT
INT2DX (N,0,1) = D00X (N) * WEIGHT
INT2DY (N,0,0) = ONE
INT2DY (N,0,1) = D00Y (N)
INT2DZ (N,0,0) = ONE
INT2DZ (N,0,1) = D00Z (N)
200 CONTINUE
C
C
C ...evaluate I=0 and K=2,SHELLQ (if any).
C
C
F = ONE
DO 210 K = 2,SHELLQ
K1 = K - 1
K2 = K - 2
DO 212 N = 1,NGQEXQ
B1 = F * B01 (N)
INT2DX (N,0,K) = B1 * INT2DX (N,0,K2)
+ + D00X (N) * INT2DX (N,0,K1)
INT2DY (N,0,K) = B1 * INT2DY (N,0,K2)
+ + D00Y (N) * INT2DY (N,0,K1)
INT2DZ (N,0,K) = B1 * INT2DZ (N,0,K2)
+ + D00Z (N) * INT2DZ (N,0,K1)
212 CONTINUE
F = F + ONE
210 CONTINUE
RETURN
C
C
C ...the cases P >= p-shell and Q = s-shell.
C Evaluate I=0,1 and K=0.
C
C
3 DO 300 N = 1,NGQEXQ
WEIGHT = WTS (N)
INT2DX (N,0,0) = WEIGHT
INT2DX (N,1,0) = C00X (N) * WEIGHT
INT2DY (N,0,0) = ONE
INT2DY (N,1,0) = C00Y (N)
INT2DZ (N,0,0) = ONE
INT2DZ (N,1,0) = C00Z (N)
300 CONTINUE
C
C
C ...evaluate I=2,SHELLP (if any) and K=0.
C
C
F = ONE
DO 310 I = 2,SHELLP
I1 = I - 1
I2 = I - 2
DO 312 N = 1,NGQEXQ
B1 = F * B10 (N)
INT2DX (N,I,0) = B1 * INT2DX (N,I2,0)
+ + C00X (N) * INT2DX (N,I1,0)
INT2DY (N,I,0) = B1 * INT2DY (N,I2,0)
+ + C00Y (N) * INT2DY (N,I1,0)
INT2DZ (N,I,0) = B1 * INT2DZ (N,I2,0)
+ + C00Z (N) * INT2DZ (N,I1,0)
312 CONTINUE
F = F + ONE
310 CONTINUE
RETURN
C
C
C ...the cases P >= p-shell and Q >= p-shell.
C Evaluate I=0,SHELLP I=0
C K=0 and K=0,SHELLQ
C
C
4 DO 400 N = 1,NGQEXQ
WEIGHT = WTS (N)
INT2DX (N,0,0) = WEIGHT
INT2DX (N,1,0) = C00X (N) * WEIGHT
INT2DX (N,0,1) = D00X (N) * WEIGHT
INT2DY (N,0,0) = ONE
INT2DY (N,1,0) = C00Y (N)
INT2DY (N,0,1) = D00Y (N)
INT2DZ (N,0,0) = ONE
INT2DZ (N,1,0) = C00Z (N)
INT2DZ (N,0,1) = D00Z (N)
400 CONTINUE
F = ONE
DO 410 I = 2,SHELLP
I1 = I - 1
I2 = I - 2
DO 412 N = 1,NGQEXQ
B1 = F * B10 (N)
INT2DX (N,I,0) = B1 * INT2DX (N,I2,0)
+ + C00X (N) * INT2DX (N,I1,0)
INT2DY (N,I,0) = B1 * INT2DY (N,I2,0)
+ + C00Y (N) * INT2DY (N,I1,0)
INT2DZ (N,I,0) = B1 * INT2DZ (N,I2,0)
+ + C00Z (N) * INT2DZ (N,I1,0)
412 CONTINUE
F = F + ONE
410 CONTINUE
F = ONE
DO 414 K = 2,SHELLQ
K1 = K - 1
K2 = K - 2
DO 416 N = 1,NGQEXQ
B1 = F * B01 (N)
INT2DX (N,0,K) = B1 * INT2DX (N,0,K2)
+ + D00X (N) * INT2DX (N,0,K1)
INT2DY (N,0,K) = B1 * INT2DY (N,0,K2)
+ + D00Y (N) * INT2DY (N,0,K1)
INT2DZ (N,0,K) = B1 * INT2DZ (N,0,K2)
+ + D00Z (N) * INT2DZ (N,0,K1)
416 CONTINUE
F = F + ONE
414 CONTINUE
C
C
C ...evaluate I=1,SHELLP and K=1,SHELLQ (if any)
C in most economical way.
C
C
IF (SHELLQ.LE.SHELLP) THEN
F1 = ONE
DO 420 K = 1,SHELLQ
K1 = K - 1
DO 421 N = 1,NGQEXQ
B0 = F1 * B00 (N)
INT2DX (N,1,K) = B0 * INT2DX (N,0,K1)
+ + C00X (N) * INT2DX (N,0,K)
INT2DY (N,1,K) = B0 * INT2DY (N,0,K1)
+ + C00Y (N) * INT2DY (N,0,K)
INT2DZ (N,1,K) = B0 * INT2DZ (N,0,K1)
+ + C00Z (N) * INT2DZ (N,0,K)
421 CONTINUE
F2 = ONE
DO 422 I = 2,SHELLP
I1 = I - 1
I2 = I - 2
DO 423 N = 1,NGQEXQ
B0 = F1 * B00 (N)
B1 = F2 * B10 (N)
INT2DX (N,I,K) = B0 * INT2DX (N,I1,K1)
+ + B1 * INT2DX (N,I2,K)
+ + C00X (N) * INT2DX (N,I1,K)
INT2DY (N,I,K) = B0 * INT2DY (N,I1,K1)
+ + B1 * INT2DY (N,I2,K)
+ + C00Y (N) * INT2DY (N,I1,K)
INT2DZ (N,I,K) = B0 * INT2DZ (N,I1,K1)
+ + B1 * INT2DZ (N,I2,K)
+ + C00Z (N) * INT2DZ (N,I1,K)
423 CONTINUE
F2 = F2 + ONE
422 CONTINUE
F1 = F1 + ONE
420 CONTINUE
ELSE
F1 = ONE
DO 430 I = 1,SHELLP
I1 = I - 1
DO 431 N = 1,NGQEXQ
B0 = F1 * B00 (N)
INT2DX (N,I,1) = B0 * INT2DX (N,I1,0)
+ + D00X (N) * INT2DX (N,I,0)
INT2DY (N,I,1) = B0 * INT2DY (N,I1,0)
+ + D00Y (N) * INT2DY (N,I,0)
INT2DZ (N,I,1) = B0 * INT2DZ (N,I1,0)
+ + D00Z (N) * INT2DZ (N,I,0)
431 CONTINUE
F2 = ONE
DO 432 K = 2,SHELLQ
K1 = K - 1
K2 = K - 2
DO 433 N = 1,NGQEXQ
B0 = F1 * B00 (N)
B1 = F2 * B01 (N)
INT2DX (N,I,K) = B0 * INT2DX (N,I1,K1)
+ + B1 * INT2DX (N,I,K2)
+ + D00X (N) * INT2DX (N,I,K1)
INT2DY (N,I,K) = B0 * INT2DY (N,I1,K1)
+ + B1 * INT2DY (N,I,K2)
+ + D00Y (N) * INT2DY (N,I,K1)
INT2DZ (N,I,K) = B0 * INT2DZ (N,I1,K1)
+ + B1 * INT2DZ (N,I,K2)
+ + D00Z (N) * INT2DZ (N,I,K1)
433 CONTINUE
F2 = F2 + ONE
432 CONTINUE
F1 = F1 + ONE
430 CONTINUE
END IF
C
C
C ...ready!
C
C
RETURN
END
|