1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
SUBROUTINE ERD__SET_DERV_ABCD
+
+ ( NCGTO1,NCGTO2,NCGTO3,NCGTO4,
+ NPGTO1,NPGTO2,NPGTO3,NPGTO4,
+ SHELL1,SHELL2,SHELL3,SHELL4,
+ X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4,
+ EXP1,EXP2,EXP3,EXP4,
+ CC1,CC2,CC3,CC4,
+ DER1X,DER1Y,DER1Z,
+ DER2X,DER2Y,DER2Z,
+ DER3X,DER3Y,DER3Z,
+ DER4X,DER4Y,DER4Z,
+ SPHERIC,
+
+ NCGTOA,NCGTOB,NCGTOC,NCGTOD,
+ NPGTOA,NPGTOB,NPGTOC,NPGTOD,
+ SHELLA,SHELLB,SHELLC,SHELLD,
+ SHELLP,SHELLQ,SHELLT,
+ MXSHELL,
+ XA,YA,ZA,XB,YB,ZB,XC,YC,ZC,XD,YD,ZD,
+ NDERX,NDERY,NDERZ,
+ DERAX,DERAY,DERAZ,
+ DERBX,DERBY,DERBZ,
+ DERCX,DERCY,DERCZ,
+ DERDX,DERDY,DERDZ,
+ DERPX,DERPY,DERPZ,
+ DERQX,DERQY,DERQZ,
+ DIFFA,DIFFB,DIFFC,DIFFD,
+ DIFFX,DIFFY,DIFFZ,
+ CENEQS,
+ NZSHELL,NZNXYZ,
+ PRIMTYP,ANGMTYP,
+ ATOMAB,ATOMCD,
+ EQUALAB,EQUALCD,
+ ABX,ABY,ABZ,CDX,CDY,CDZ,
+ NABCOOR,
+ RNABSQ,RNCDSQ,
+ SPNORM,
+ NXYZET,NXYZP,NXYZBRA,NXYZT,
+ NXYZA,NXYZB,NXYZC,NXYZD,
+ NRYA,NRYB,NRYC,NRYD,
+ INDEXA,INDEXB,INDEXC,INDEXD,
+ SWAP12,SWAP34,SWAPRS,SWAPTU,TR1234,
+ LEXPA,LEXPB,LEXPC,LEXPD,
+ LCCA,LCCB,LCCC,LCCD,
+ LCCSEGA,LCCSEGB,LCCSEGC,LCCSEGD,
+ NXYZHRR,NCOLHRR,NROTHRR,
+ EMPTY )
+
C------------------------------------------------------------------------
C OPERATION : ERD__SET_DERV_ABCD
C MODULE : ELECTRON REPULSION INTEGRALS DIRECT
C MODULE-ID : ERD
C SUBROUTINES : none
C DESCRIPTION : This routine handles the logistics on how to evaluate
C the (12|34) derivative integral batch in the most
C efficient way. It performs the label map:
C
C (12|34) --> (AB|CD)
C
C and returns some additional data of crucial importance
C for evaluation of the (AB|CD) derivative integrals.
C
C The freedom in making the internal association 1,2,3,4
C -> A,B,C,D follows from the 8-fold permutational
C symmetry of the derivative integrals in (12|34):
C
C (12|34) = (21|34) = (12|43) = (21|43) =
C (34|12) = (43|12) = (34|21) = (43|21)
C
C where the first line has only 12 -> 21 and 34 -> 43
C switches and the second line is obtained from the
C first by bra <-> ket transpositions. Note, that this
C 8-fold permutational symmetry only holds as long
C as we permute the differential operators with it.
C
C The type of switch to be applied is governed by
C the following rules:
C
C 1) The final A,B,C,D shell labels should obey
C the relations A>=B and C>=D, since this means
C the least amount of work (# of steps) for the
C HRR procedure, either at primitive or at
C contracted level. Notice here, that if the
C HRR is to be applied at the primitive level,
C then it will be done before! any derivations
C are performed on either A,B,C or D shells.
C Hence in that case the size of these shells
C must include the derivative operator sizes
C too when figuring out the relations A>=B and
C C>=D.
C
C 2) Whenever possible, try to apply the HRR at
C contracted level on the bra side. The HRR
C at contracted level can only be applied, if
C no differential operators are associated with
C the corresponding centers. Hence, if the
C differential operators are associated with
C only the bra in (12|34), then we interchange
C bra <-> ket, so that we can apply the HRR at
C contracted level to the undifferentiated side
C AB in (AB|CD).
C
C
C Input (x = 1,2,3 and 4):
C
C NCGTOx = # of contractions for csh x
C NPGTOx = # of primitives per contraction
C for csh x
C SHELLx = the shell type for csh x
C Xy,Yy,Zy = the x,y,z-coordinates for centers
C y = 1,2,3 and 4
C EXPx = primitive exponents for csh x
C CCx = contraction coeffs for csh x
C DERyp = the order of differentiation on
C centers y = 1,2,3,4 with respect
C to the p = x,y,z coordinates
C SPHERIC = is true, if spherical integrals
C are wanted, false if cartesian
C ones are wanted
C
C Output (x = A,B,C and D):
C
C NCGTOx = # of contractions for csh x
C NPGTOx = # of primitives per contraction
C for csh x
C SHELLx = the shell type for csh x
C SHELLy = the shell sums: y = P,Q,T =
C A+B,C+D,P+Q
C MXSHELL = the largest (maximum) shell type
C Xx,Yx,Zx = the x,y,z-coordinates for centers
C x = A,B,C and D
C NDERp = the total order of differentiation
C with respect to the p = x,y,z
C coordinates
C DERyp = the order of differentiation on
C centers y = A,B,C,D,P=A+B,Q=C+D
C with respect to the p = x,y,z
C coordinates
C DIFFy = is true, if differentiation will be
C performed on centers y = A,B,C,D
C involving the y = x,y,z coordinates
C CENEQS (I,J) = center equality indicator of size
C 4 x 4. The matrix is defined as
C follows: if the centers indexed by
C I and J are equal => value = 1,
C if not => value = 0. The indices
C correspond to the A,B,C,D ordering,
C i.e. 1st index -> A, 2nd -> B, etc
C NZSHELL (I) = the I-th nonzero shell type within
C the shell type center sequence
C A,B,C,D
C NZNXYZ (I) = the I-th # of cartesian monomials
C corresponding to the I-th nonzero
C shell in NZSHELL (I)
C PRIMTYP = character variable, indicating
C which type of primitives will
C be generated and contracted. Can
C be only 'E0CD' or 'ABCD'
C ANGMTYP = character variable, indicating
C the overall angular momentum type
C combination without observing
C the order. Can be only 'SSSS',
C 'SSSX','SSXX','SXXX' or 'XXXX',
C where the S-symbol indicates the
C presence of an s-shell and the
C X-symbol the presence of a shell
C >= p-shell
C ATOMxy = indicates, if atoms x and y are
C considered to be equal for the
C pairs xy = AB and CD
C EQUALxy = indicates, if csh x and csh y are
C considered to be equal for the
C pairs xy = AB and CD
C xxX,xxY,xxZ = the x,y,z-coordinate differences
C for centers xx = AB and CD
C NABCOOR = # of non-zero x,y,z-coordinate
C differences for centers A and B
C RNxxSQ = square of the magnitude of the
C distance between centers xx = AB
C and CD
C SPNORM = normalization factor due to
C presence of s- and p-type shells.
C For each s-type shell there is a
C factor of 1 and for each p-type
C shell a factor of 2
C NXYZET = sum of # of cartesian monomials
C for all shells in the range
C E = A,...,A+B
C NXYZP = # of cartesian monomials for the
C P = A + B shell
C NXYZBRA = total # of cartesian monomials
C for the bra side of the primitive
C derivative integral batch
C NXYZT = total # of cartesian monomials
C for the primitive derivative
C integral batch
C NXYZx = # of cartesian monomials for csh x
C NRYx = # of spherical functions for csh x
C INDEXx = index A,B,C,D -> 1,2,3,4 map
C SWAPxy = is .true. for xy = 12 and 34, if
C a swap 1 <-> 2 and 3 <-> 4 has
C been performed
C SWAPRS(TU) = is set .true. if the contraction
C order of the primitives pair AB(CD)
C will be performed in reverse order
C BA(DC) for efficiency reasons
C TR1234 = is .true., if a bra <-> ket
C transposition has been applied
C LEXPx = pointers to locate appropriate
C section of the exponent array
C corresponding to csh x
C LCCx = pointers to locate appropriate
C section of the contraction coeff
C array corresponding to csh x
C LCCSEGx = pointers to locate appropriate
C section of the lowest and highest
C primitive index array defining
C segmented contraction boundaries
C for csh x
C NXYZHRR = maximum dimension of monomial part
C after contraction of primitives.
C Takes into consideration eventual
C HRR at contracted level on E -> AB
C part and cartesian -> spherical
C transformations
C NCOLHRR = maximum # of HRR rotation matrix
C columns needed to generate the
C final HRR rotation matrix
C NROTHRR = maximum # of HRR rotation matrix
C elements needed to generate the
C final HRR rotation matrix
C EMPTY = logical flag, indicating if an
C empty batch of integrals is
C expected.
C
C
C AUTHOR : Norbert Flocke
C------------------------------------------------------------------------
C
C
C
C ...include files and declare variables.
C
C
IMPLICIT NONE
LOGICAL ALERT
LOGICAL ATOM12,ATOM13,ATOM14,ATOM23,ATOM24,ATOM34
LOGICAL ATOMIC,ATOMAB,ATOMCD
LOGICAL DIFF1,DIFF2,DIFF3,DIFF4
LOGICAL DIFFA,DIFFB,DIFFC,DIFFD
LOGICAL DIFFBRA,DIFFKET
LOGICAL DIFFX,DIFFY,DIFFZ
LOGICAL EMPTY
LOGICAL EQUAL12,EQUAL34
LOGICAL EQUALAB,EQUALCD
LOGICAL SAMEAB,SAMEAC,SAMEAD,SAMEBC,SAMEBD,SAMECD
LOGICAL SPHERIC
LOGICAL SWAP12,SWAP34,SWAPRS,SWAPTU,TR1234
LOGICAL SWAPX,SWAPY,SWAPZ
CHARACTER*4 ANGMTYP
CHARACTER*4 PRIMTYP
INTEGER ATOM1,ATOM2,ATOM3,ATOM4
INTEGER ATOMA,ATOMB,ATOMC,ATOMD
INTEGER DER1X,DER2X,DER3X,DER4X
INTEGER DER1Y,DER2Y,DER3Y,DER4Y
INTEGER DER1Z,DER2Z,DER3Z,DER4Z
INTEGER DERAX,DERBX,DERCX,DERDX
INTEGER DERAY,DERBY,DERCY,DERDY
INTEGER DERAZ,DERBZ,DERCZ,DERDZ
INTEGER DERPX,DERPY,DERPZ
INTEGER DERQX,DERQY,DERQZ
INTEGER I,J,M
INTEGER INDEXA,INDEXB,INDEXC,INDEXD
INTEGER LCCSEGA,LCCSEGB,LCCSEGC,LCCSEGD
INTEGER LCCA,LCCB,LCCC,LCCD
INTEGER LEXPA,LEXPB,LEXPC,LEXPD
INTEGER MXSHELL
INTEGER NABCOOR
INTEGER NCC1,NCC2,NCC3
INTEGER NCGTO1,NCGTO2,NCGTO3,NCGTO4
INTEGER NCGTOA,NCGTOB,NCGTOC,NCGTOD
INTEGER NDERX,NDERY,NDERZ
INTEGER NGH,NGHO
INTEGER NPGTO1,NPGTO2,NPGTO3,NPGTO4
INTEGER NPGTOA,NPGTOB,NPGTOC,NPGTOD
INTEGER NROW,NCOL,NROT
INTEGER NRY1,NRY2,NRY3,NRY4
INTEGER NRYA,NRYB,NRYC,NRYD
INTEGER NXYZ1,NXYZ2,NXYZ3,NXYZ4
INTEGER NXYZA,NXYZB,NXYZC,NXYZD
INTEGER NXYZET,NXYZP,NXYZBRA,NXYZT
INTEGER NXYZG,NXYZH,NXYZI,NXYZGO,NXYZHO
INTEGER NXYZHRR,NCOLHRR,NROTHRR
INTEGER SHELL1,SHELL2,SHELL3,SHELL4
INTEGER SHELLA,SHELLB,SHELLC,SHELLD
INTEGER SHELLG,SHELLH
INTEGER SHELLP,SHELLQ,SHELLT
INTEGER ADD (0:2)
INTEGER NZNXYZ (1:4)
INTEGER NZSHELL (1:4)
INTEGER CENEQS (1:4,1:4)
DOUBLE PRECISION ABX,ABY,ABZ,CDX,CDY,CDZ
DOUBLE PRECISION IVSUM1,IVSUM2,IVSUM3,IVSUM4
DOUBLE PRECISION RNABSQ,RNCDSQ
DOUBLE PRECISION SPNORM
DOUBLE PRECISION X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4
DOUBLE PRECISION XA,YA,ZA,XB,YB,ZB,XC,YC,ZC,XD,YD,ZD
DOUBLE PRECISION ZERO,HALF,ONE
DOUBLE PRECISION EXP1 (1:NPGTO1)
DOUBLE PRECISION EXP2 (1:NPGTO2)
DOUBLE PRECISION EXP3 (1:NPGTO3)
DOUBLE PRECISION EXP4 (1:NPGTO4)
DOUBLE PRECISION CC1 (1:NPGTO1,1:NCGTO1)
DOUBLE PRECISION CC2 (1:NPGTO2,1:NCGTO2)
DOUBLE PRECISION CC3 (1:NPGTO3,1:NCGTO3)
DOUBLE PRECISION CC4 (1:NPGTO4,1:NCGTO4)
DATA ADD /0,0,1/
PARAMETER (ZERO = 0.D0)
PARAMETER (HALF = 0.5D0)
PARAMETER (ONE = 1.D0)
C
C
C------------------------------------------------------------------------
C
C
C ...generate all 1,2,3,4 data. Decide as early as
C possible, if a zero batch of derivative integrals
C is expected.
C
C
EMPTY = .FALSE.
ATOM12 = (X1.EQ.X2) .AND. (Y1.EQ.Y2) .AND. (Z1.EQ.Z2)
ATOM23 = (X2.EQ.X3) .AND. (Y2.EQ.Y3) .AND. (Z2.EQ.Z3)
ATOM34 = (X3.EQ.X4) .AND. (Y3.EQ.Y4) .AND. (Z3.EQ.Z4)
ATOMIC = (ATOM12 .AND. ATOM34 .AND. ATOM23)
IF (ATOMIC) THEN
EMPTY = .TRUE.
RETURN
END IF
MXSHELL = MAX0 (SHELL1,SHELL2,SHELL3,SHELL4)
ATOM13 = (X1.EQ.X3) .AND. (Y1.EQ.Y3) .AND. (Z1.EQ.Z3)
ATOM14 = (X1.EQ.X4) .AND. (Y1.EQ.Y4) .AND. (Z1.EQ.Z4)
ATOM24 = (X2.EQ.X4) .AND. (Y2.EQ.Y4) .AND. (Z2.EQ.Z4)
ATOM1 = 1
ATOM2 = 2
ATOM3 = 3
ATOM4 = 4
IF (ATOM12) ATOM1 = ATOM2
IF (ATOM13) ATOM1 = ATOM3
IF (ATOM14) ATOM1 = ATOM4
IF (ATOM23) ATOM2 = ATOM3
IF (ATOM24) ATOM2 = ATOM4
IF (ATOM34) ATOM3 = ATOM4
C
C
C ...determine csh equality between center pairs 1,2
C and 3,4 in increasing order of complexity:
C
C centers -> shells -> exponents -> ctr coefficients
C
C
EQUAL12 = ATOM12
IF (EQUAL12) THEN
EQUAL12 = (SHELL1 .EQ. SHELL2)
+ .AND. (NPGTO1 .EQ. NPGTO2)
+ .AND. (NCGTO1 .EQ. NCGTO2)
IF (EQUAL12) THEN
DO 10 I = 1,NPGTO1
EQUAL12 = EQUAL12 .AND. (EXP1(I).EQ.EXP2(I))
10 CONTINUE
IF (EQUAL12) THEN
DO 12 J = 1,NCGTO1
IF (EQUAL12) THEN
DO 14 I = 1,NPGTO1
EQUAL12 = EQUAL12 .AND. (CC1(I,J).EQ.CC2(I,J))
14 CONTINUE
END IF
12 CONTINUE
END IF
END IF
END IF
EQUAL34 = ATOM34
IF (EQUAL34) THEN
EQUAL34 = (SHELL3 .EQ. SHELL4)
+ .AND. (NPGTO3 .EQ. NPGTO4)
+ .AND. (NCGTO3 .EQ. NCGTO4)
IF (EQUAL34) THEN
DO 30 I = 1,NPGTO3
EQUAL34 = EQUAL34 .AND. (EXP3(I).EQ.EXP4(I))
30 CONTINUE
IF (EQUAL34) THEN
DO 32 J = 1,NCGTO3
IF (EQUAL34) THEN
DO 34 I = 1,NPGTO3
EQUAL34 = EQUAL34 .AND. (CC3(I,J).EQ.CC4(I,J))
34 CONTINUE
END IF
32 CONTINUE
END IF
END IF
END IF
C
C
C ...set the cartesian and spherical dimensions. In case
C no spherical transformations are wanted, set the
C corresponding dimensions equal to the cartesian ones.
C
C
NXYZ1 = (SHELL1+1)*(SHELL1+2)/2
NXYZ2 = (SHELL2+1)*(SHELL2+2)/2
NXYZ3 = (SHELL3+1)*(SHELL3+2)/2
NXYZ4 = (SHELL4+1)*(SHELL4+2)/2
NRY1 = SHELL1 + SHELL1 + 1
NRY2 = SHELL2 + SHELL2 + 1
NRY3 = SHELL3 + SHELL3 + 1
NRY4 = SHELL4 + SHELL4 + 1
IF (.NOT.SPHERIC) THEN
NRY1 = NXYZ1
NRY2 = NXYZ2
NRY3 = NXYZ3
NRY4 = NXYZ4
END IF
C
C
C ...decide on the 1 <-> 2 and/or 3 <-> 4 swapping.
C Be careful to include the derivative operators!
C This is a bit trickey, since we have three possible
C situations due to the x,y,z components. The rule
C right now is to make the swapping, if at least
C two of the components are in favor to do so.
C
C
SWAPX = (SHELL1 + DER1X) .LT. (SHELL2 + DER2X)
SWAPY = (SHELL1 + DER1Y) .LT. (SHELL2 + DER2Y)
SWAPZ = (SHELL1 + DER1Z) .LT. (SHELL2 + DER2Z)
SWAP12 = (SWAPX .AND. SWAPY)
+ .OR. (SWAPX .AND. SWAPZ)
+ .OR. (SWAPY .AND. SWAPZ)
SWAPX = (SHELL3 + DER3X) .LT. (SHELL4 + DER4X)
SWAPY = (SHELL3 + DER3Y) .LT. (SHELL4 + DER4Y)
SWAPZ = (SHELL3 + DER3Z) .LT. (SHELL4 + DER4Z)
SWAP34 = (SWAPX .AND. SWAPY)
+ .OR. (SWAPX .AND. SWAPZ)
+ .OR. (SWAPY .AND. SWAPZ)
C
C
C ...analyze the situation (center location + coordinate
C type) of the derivative operators.
C
C
DIFFX = (DER1X + DER2X + DER3X + DER4X) .NE. 0
DIFFY = (DER1Y + DER2Y + DER3Y + DER4Y) .NE. 0
DIFFZ = (DER1Z + DER2Z + DER3Z + DER4Z) .NE. 0
DIFF1 = (DER1X + DER1Y + DER1Z) .NE. 0
DIFF2 = (DER2X + DER2Y + DER2Z) .NE. 0
DIFF3 = (DER3X + DER3Y + DER3Z) .NE. 0
DIFF4 = (DER4X + DER4Y + DER4Z) .NE. 0
DIFFBRA = DIFF1 .OR. DIFF2
DIFFKET = DIFF3 .OR. DIFF4
IF (DIFFBRA .AND. DIFFKET) THEN
PRIMTYP = 'ABCD'
TR1234 = .FALSE.
ELSE IF (DIFFBRA .AND. .NOT.DIFFKET) THEN
PRIMTYP = 'E0CD'
TR1234 = .TRUE.
ELSE IF (DIFFKET .AND. .NOT.DIFFBRA) THEN
PRIMTYP = 'E0CD'
TR1234 = .FALSE.
ELSE
WRITE (*,*) ' No differential operator! '
WRITE (*,*) ' DIFFBRA,DIFFKET = ',DIFFBRA,DIFFKET
WRITE (*,*) ' erd__set_derv_abcd '
STOP
END IF
C
C
C ...according to the previously gathered info, set the
C new A,B,C,D shells, # of primitives + contraction
C coeffs as well as pointers to the alpha exponents
C and contraction coefficients.
C
C
NCC1 = NPGTO1 * NCGTO1
NCC2 = NPGTO2 * NCGTO2
NCC3 = NPGTO3 * NCGTO3
IF (.NOT.TR1234) THEN
ATOMAB = ATOM12
ATOMCD = ATOM34
EQUALAB = EQUAL12
EQUALCD = EQUAL34
IF (.NOT.SWAP12) THEN
XA = X1
YA = Y1
ZA = Z1
XB = X2
YB = Y2
ZB = Z2
ATOMA = ATOM1
ATOMB = ATOM2
SHELLA = SHELL1
SHELLB = SHELL2
NPGTOA = NPGTO1
NPGTOB = NPGTO2
NCGTOA = NCGTO1
NCGTOB = NCGTO2
NXYZA = NXYZ1
NXYZB = NXYZ2
NRYA = NRY1
NRYB = NRY2
DIFFA = DIFF1
DIFFB = DIFF2
DERAX = DER1X
DERAY = DER1Y
DERAZ = DER1Z
DERBX = DER2X
DERBY = DER2Y
DERBZ = DER2Z
INDEXA = 1
INDEXB = 2
LEXPA = 1
LEXPB = LEXPA + NPGTO1
LCCA = 1
LCCB = LCCA + NCC1
LCCSEGA = 1
LCCSEGB = LCCSEGA + NCGTO1
ELSE
XA = X2
YA = Y2
ZA = Z2
XB = X1
YB = Y1
ZB = Z1
ATOMA = ATOM2
ATOMB = ATOM1
SHELLA = SHELL2
SHELLB = SHELL1
NPGTOA = NPGTO2
NPGTOB = NPGTO1
NCGTOA = NCGTO2
NCGTOB = NCGTO1
NXYZA = NXYZ2
NXYZB = NXYZ1
NRYA = NRY2
NRYB = NRY1
DIFFA = DIFF2
DIFFB = DIFF1
DERAX = DER2X
DERAY = DER2Y
DERAZ = DER2Z
DERBX = DER1X
DERBY = DER1Y
DERBZ = DER1Z
INDEXA = 2
INDEXB = 1
LEXPB = 1
LEXPA = LEXPB + NPGTO1
LCCB = 1
LCCA = LCCB + NCC1
LCCSEGB = 1
LCCSEGA = LCCSEGB + NCGTO1
END IF
IF (.NOT.SWAP34) THEN
XC = X3
YC = Y3
ZC = Z3
XD = X4
YD = Y4
ZD = Z4
ATOMC = ATOM3
ATOMD = ATOM4
SHELLC = SHELL3
SHELLD = SHELL4
NPGTOC = NPGTO3
NPGTOD = NPGTO4
NCGTOC = NCGTO3
NCGTOD = NCGTO4
NXYZC = NXYZ3
NXYZD = NXYZ4
NRYC = NRY3
NRYD = NRY4
DIFFC = DIFF3
DIFFD = DIFF4
DERCX = DER3X
DERCY = DER3Y
DERCZ = DER3Z
DERDX = DER4X
DERDY = DER4Y
DERDZ = DER4Z
INDEXC = 3
INDEXD = 4
LEXPC = 1 + NPGTO1 + NPGTO2
LEXPD = LEXPC + NPGTO3
LCCC = 1 + NCC1 + NCC2
LCCD = LCCC + NCC3
LCCSEGC = 1 + NCGTO1 + NCGTO2
LCCSEGD = LCCSEGC + NCGTO3
ELSE
XC = X4
YC = Y4
ZC = Z4
XD = X3
YD = Y3
ZD = Z3
ATOMC = ATOM4
ATOMD = ATOM3
SHELLC = SHELL4
SHELLD = SHELL3
NPGTOC = NPGTO4
NPGTOD = NPGTO3
NCGTOC = NCGTO4
NCGTOD = NCGTO3
NXYZC = NXYZ4
NXYZD = NXYZ3
NRYC = NRY4
NRYD = NRY3
DIFFC = DIFF4
DIFFD = DIFF3
DERCX = DER4X
DERCY = DER4Y
DERCZ = DER4Z
DERDX = DER3X
DERDY = DER3Y
DERDZ = DER3Z
INDEXC = 4
INDEXD = 3
LEXPD = 1 + NPGTO1 + NPGTO2
LEXPC = LEXPD + NPGTO3
LCCD = 1 + NCC1 + NCC2
LCCC = LCCD + NCC3
LCCSEGD = 1 + NCGTO1 + NCGTO2
LCCSEGC = LCCSEGD + NCGTO3
END IF
ELSE
ATOMAB = ATOM34
ATOMCD = ATOM12
EQUALAB = EQUAL34
EQUALCD = EQUAL12
IF (.NOT.SWAP12) THEN
XC = X1
YC = Y1
ZC = Z1
XD = X2
YD = Y2
ZD = Z2
ATOMC = ATOM1
ATOMD = ATOM2
SHELLC = SHELL1
SHELLD = SHELL2
NPGTOC = NPGTO1
NPGTOD = NPGTO2
NCGTOC = NCGTO1
NCGTOD = NCGTO2
NXYZC = NXYZ1
NXYZD = NXYZ2
NRYC = NRY1
NRYD = NRY2
DIFFC = DIFF1
DIFFD = DIFF2
DERCX = DER1X
DERCY = DER1Y
DERCZ = DER1Z
DERDX = DER2X
DERDY = DER2Y
DERDZ = DER2Z
INDEXC = 1
INDEXD = 2
LEXPC = 1
LEXPD = LEXPC + NPGTO1
LCCC = 1
LCCD = LCCC + NCC1
LCCSEGC = 1
LCCSEGD = LCCSEGC + NCGTO1
ELSE
XC = X2
YC = Y2
ZC = Z2
XD = X1
YD = Y1
ZD = Z1
ATOMC = ATOM2
ATOMD = ATOM1
SHELLC = SHELL2
SHELLD = SHELL1
NPGTOC = NPGTO2
NPGTOD = NPGTO1
NCGTOC = NCGTO2
NCGTOD = NCGTO1
NXYZC = NXYZ2
NXYZD = NXYZ1
NRYC = NRY2
NRYD = NRY1
DIFFC = DIFF2
DIFFD = DIFF1
DERCX = DER2X
DERCY = DER2Y
DERCZ = DER2Z
DERDX = DER1X
DERDY = DER1Y
DERDZ = DER1Z
INDEXC = 2
INDEXD = 1
LEXPD = 1
LEXPC = LEXPD + NPGTO1
LCCD = 1
LCCC = LCCD + NCC1
LCCSEGD = 1
LCCSEGC = LCCSEGD + NCGTO1
END IF
IF (.NOT.SWAP34) THEN
XA = X3
YA = Y3
ZA = Z3
XB = X4
YB = Y4
ZB = Z4
ATOMA = ATOM3
ATOMB = ATOM4
SHELLA = SHELL3
SHELLB = SHELL4
NPGTOA = NPGTO3
NPGTOB = NPGTO4
NCGTOA = NCGTO3
NCGTOB = NCGTO4
NXYZA = NXYZ3
NXYZB = NXYZ4
NRYA = NRY3
NRYB = NRY4
DIFFA = DIFF3
DIFFB = DIFF4
DERAX = DER3X
DERAY = DER3Y
DERAZ = DER3Z
DERBX = DER4X
DERBY = DER4Y
DERBZ = DER4Z
INDEXA = 3
INDEXB = 4
LEXPA = 1 + NPGTO1 + NPGTO2
LEXPB = LEXPA + NPGTO3
LCCA = 1 + NCC1 + NCC2
LCCB = LCCA + NCC3
LCCSEGA = 1 + NCGTO1 + NCGTO2
LCCSEGB = LCCSEGA + NCGTO3
ELSE
XA = X4
YA = Y4
ZA = Z4
XB = X3
YB = Y3
ZB = Z3
ATOMA = ATOM4
ATOMB = ATOM3
SHELLA = SHELL4
SHELLB = SHELL3
NPGTOA = NPGTO4
NPGTOB = NPGTO3
NCGTOA = NCGTO4
NCGTOB = NCGTO3
NXYZA = NXYZ4
NXYZB = NXYZ3
NRYA = NRY4
NRYB = NRY3
DIFFA = DIFF4
DIFFB = DIFF3
DERAX = DER4X
DERAY = DER4Y
DERAZ = DER4Z
DERBX = DER3X
DERBY = DER3Y
DERBZ = DER3Z
INDEXA = 4
INDEXB = 3
LEXPB = 1 + NPGTO1 + NPGTO2
LEXPA = LEXPB + NPGTO3
LCCB = 1 + NCC1 + NCC2
LCCA = LCCB + NCC3
LCCSEGB = 1 + NCGTO1 + NCGTO2
LCCSEGA = LCCSEGB + NCGTO3
END IF
END IF
C
C
C ...the new A,B,C,D shells are set. Calculate the
C following info: 1) control variables to be used
C during contraction, 2) total shell values for
C P=A+B,Q=C+D and T=A+B+C+D, 3) the total derivative
C orders per cartesian component for the shell sums
C P=A+B and Q=C+D and 4) the overall norm factor SPNORM
C due to presence of s- or p-type shells. The latter
C is necessary, because for such shells there will be
C no calls to the cartesian normalization or spherical
C transformation routines. The contribution to SPNORM
C is very simple: each s-type shell -> * 1.0, each
C p-type shell -> * 2.0.
C
C
SWAPRS = NPGTOA .GT. NPGTOB
SWAPTU = NPGTOC .GT. NPGTOD
SHELLP = SHELLA + SHELLB
SHELLQ = SHELLC + SHELLD
SHELLT = SHELLP + SHELLQ
DERPX = DERAX + DERBX
DERPY = DERAY + DERBY
DERPZ = DERAZ + DERBZ
DERQX = DERCX + DERDX
DERQY = DERCY + DERDY
DERQZ = DERCZ + DERDZ
SPNORM = ONE
IF (SHELLA.EQ.1) THEN
SPNORM = SPNORM + SPNORM
END IF
IF (SHELLB.EQ.1) THEN
SPNORM = SPNORM + SPNORM
END IF
IF (SHELLC.EQ.1) THEN
SPNORM = SPNORM + SPNORM
END IF
IF (SHELLD.EQ.1) THEN
SPNORM = SPNORM + SPNORM
END IF
C
C
C ...calculate the coordinate differences between centers
C A and B and between centers C and D and calculate the
C square of the magnitude of the distances.
C
C
IF (.NOT.ATOMAB) THEN
ABX = XA - XB
ABY = YA - YB
ABZ = ZA - ZB
RNABSQ = ABX * ABX + ABY * ABY + ABZ * ABZ
ELSE
ABX = ZERO
ABY = ZERO
ABZ = ZERO
RNABSQ = ZERO
END IF
IF (.NOT.ATOMCD) THEN
CDX = XC - XD
CDY = YC - YD
CDZ = ZC - ZD
RNCDSQ = CDX * CDX + CDY * CDY + CDZ * CDZ
ELSE
CDX = ZERO
CDY = ZERO
CDZ = ZERO
RNCDSQ = ZERO
END IF
C
C
C ...set the A,B,C,D center equality map. This map
C is a 4 x 4 dimensional array, which contains
C a 1 in (i,j) position if centers indexed by
C i and j are equal and a 0 otherwise. The indices
C of the map are such that they have the following
C correspondence:
C
C Index i value: 1 2 3 4
C corresponds to center: A B C D
C
C
CENEQS (1,1) = 1
CENEQS (2,1) = 1
CENEQS (3,1) = 1
CENEQS (4,1) = 1
CENEQS (2,2) = 1
CENEQS (3,2) = 1
CENEQS (4,2) = 1
CENEQS (3,3) = 1
CENEQS (4,3) = 1
CENEQS (4,4) = 1
IF (ATOMA .NE. ATOMB) CENEQS (2,1) = 0
IF (ATOMA .NE. ATOMC) CENEQS (3,1) = 0
IF (ATOMA .NE. ATOMD) CENEQS (4,1) = 0
IF (ATOMB .NE. ATOMC) CENEQS (3,2) = 0
IF (ATOMB .NE. ATOMD) CENEQS (4,2) = 0
IF (ATOMC .NE. ATOMD) CENEQS (4,3) = 0
CENEQS (1,2) = CENEQS (2,1)
CENEQS (1,3) = CENEQS (3,1)
CENEQS (1,4) = CENEQS (4,1)
CENEQS (2,3) = CENEQS (3,2)
CENEQS (2,4) = CENEQS (4,2)
CENEQS (3,4) = CENEQS (4,3)
C
C
C ...check, if the derivative orders for each center
C and coordinate match the center equality pattern.
C If not, stop the derivative integral calculation.
C If yes, determine the order of the derivation for
C each coordinate.
C
C
SAMEAB = CENEQS (2,1) .EQ. 1
SAMEAC = CENEQS (3,1) .EQ. 1
SAMEAD = CENEQS (4,1) .EQ. 1
SAMEBC = CENEQS (3,2) .EQ. 1
SAMEBD = CENEQS (4,2) .EQ. 1
SAMECD = CENEQS (4,3) .EQ. 1
IVSUM1 = ONE / DFLOAT ( CENEQS(1,1)
+ + CENEQS(2,1)
+ + CENEQS(3,1)
+ + CENEQS(4,1) )
IVSUM2 = ONE / DFLOAT ( CENEQS(1,2)
+ + CENEQS(2,2)
+ + CENEQS(3,2)
+ + CENEQS(4,2) )
IVSUM3 = ONE / DFLOAT ( CENEQS(1,3)
+ + CENEQS(2,3)
+ + CENEQS(3,3)
+ + CENEQS(4,3) )
IVSUM4 = ONE / DFLOAT ( CENEQS(1,4)
+ + CENEQS(2,4)
+ + CENEQS(3,4)
+ + CENEQS(4,4) )
C
C
C ...x coordinate derivatives (if any).
C
C
IF (DIFFX) THEN
ALERT = (SAMEAB .AND. DERAX.NE.DERBX)
+ .OR. (SAMEAC .AND. DERAX.NE.DERCX)
+ .OR. (SAMEAD .AND. DERAX.NE.DERDX)
+ .OR. (SAMEBC .AND. DERBX.NE.DERCX)
+ .OR. (SAMEBD .AND. DERBX.NE.DERDX)
+ .OR. (SAMECD .AND. DERCX.NE.DERDX)
IF (ALERT) THEN
WRITE (*,*) ' Center equality / x derv mismatch! '
WRITE (*,*) ' DERAX,DERBX,DERCX,DERDX = ',
+ DERAX,DERBX,DERCX,DERDX
WRITE (*,*) ' erd__set_derv_abcd '
STOP
END IF
NDERX = INT ( DFLOAT (DERAX) * IVSUM1
+ + DFLOAT (DERBX) * IVSUM2
+ + DFLOAT (DERCX) * IVSUM3
+ + DFLOAT (DERDX) * IVSUM4
+ + HALF )
ELSE
NDERX = 0
END IF
C
C
C ...y coordinate derivatives (if any).
C
C
IF (DIFFY) THEN
ALERT = (SAMEAB .AND. DERAY.NE.DERBY)
+ .OR. (SAMEAC .AND. DERAY.NE.DERCY)
+ .OR. (SAMEAD .AND. DERAY.NE.DERDY)
+ .OR. (SAMEBC .AND. DERBY.NE.DERCY)
+ .OR. (SAMEBD .AND. DERBY.NE.DERDY)
+ .OR. (SAMECD .AND. DERCY.NE.DERDY)
IF (ALERT) THEN
WRITE (*,*) ' Center equality / y derv mismatch! '
WRITE (*,*) ' DERAY,DERBY,DERCY,DERDY = ',
+ DERAY,DERBY,DERCY,DERDY
WRITE (*,*) ' erd__set_derv_abcd '
STOP
END IF
NDERY = INT ( DFLOAT (DERAY) * IVSUM1
+ + DFLOAT (DERBY) * IVSUM2
+ + DFLOAT (DERCY) * IVSUM3
+ + DFLOAT (DERDY) * IVSUM4
+ + HALF )
ELSE
NDERY = 0
END IF
C
C
C ...z coordinate derivatives (if any).
C
C
IF (DIFFZ) THEN
ALERT = (SAMEAB .AND. DERAZ.NE.DERBZ)
+ .OR. (SAMEAC .AND. DERAZ.NE.DERCZ)
+ .OR. (SAMEAD .AND. DERAZ.NE.DERDZ)
+ .OR. (SAMEBC .AND. DERBZ.NE.DERCZ)
+ .OR. (SAMEBD .AND. DERBZ.NE.DERDZ)
+ .OR. (SAMECD .AND. DERCZ.NE.DERDZ)
IF (ALERT) THEN
WRITE (*,*) ' Center equality / z derv mismatch! '
WRITE (*,*) ' DERAZ,DERBZ,DERCZ,DERDZ = ',
+ DERAZ,DERBZ,DERCZ,DERDZ
WRITE (*,*) ' erd__set_derv_abcd '
STOP
END IF
NDERZ = INT ( DFLOAT (DERAZ) * IVSUM1
+ + DFLOAT (DERBZ) * IVSUM2
+ + DFLOAT (DERCZ) * IVSUM3
+ + DFLOAT (DERDZ) * IVSUM4
+ + HALF )
ELSE
NDERZ = 0
END IF
C
C
C ...calculate data relevant for the two possible cases:
C
C 1) A HRR at contracted level will be applied
C to the E -> AB part.
C
C 2) No HRR at contracted level.
C
C Explanation of variable NXYZHRR:
C
C The value of NXYZHRR, which will contain the maximum
C dimension that will be encountered for the monomial
C transformation part after contraction. The monomial
C transformations consist of a possible HRR at
C contracted level and (if any) cartesian -> spherical
C transformation sequences. For the two cases above
C we have:
C
C Case 1):
C
C i) initial dimension: NXYZET * NXYZC * NXYZD
C ii) cart -> sph on CD: NXYZET * NRYC * NRYD
C iii) perform HRR on AB: NXYZA * NXYZB * NRYC * NRYD
C iv) cart -> sph on AB: NRYA * NRYB * NRYC * NRYD
C
C Case 2):
C
C i) initial dimension: NXYZA * NXYZB * NXYZC * NXYZD
C ii) cart -> sph on CD: NXYZA * NXYZB * NRYC * NRYD
C iii) cart -> sph on AB: NRYA * NRYB * NRYC * NRYD
C
C
C The only dimension peaks are steps i) and iii) in
C Case 1) and step i) in Case 2).
C
C Other info that needs to be calculated for Case 1):
C
C a) total monomial dimension for E = A,...,A+B
C b) # of nonzero coordinate differences between
C centers A and B
C c) values NCOLHRR (maximum # of HRR rotation
C matrix columns needed to generate the final
C HRR rotation matrices) and NROTHRR (maximum
C # of HRR rotation matrix elements)
C
C We also need to evaluate the total # of monomial
C quadruplets expected for the primitive derivative
C integral batch for both cases.
C
C
IF (PRIMTYP.EQ.'E0CD') THEN
NXYZP = ((SHELLP+1)*(SHELLP+2))/2
NXYZET = (((SHELLP+1)*(SHELLP+2)*(SHELLP+3))/6)
+ - (((SHELLA )*(SHELLA+1)*(SHELLA+2))/6)
NXYZBRA = NXYZET
NXYZT = NXYZBRA * NXYZC * NXYZD
NXYZHRR = MAX0 (NXYZT,NXYZA*NXYZB*NRYC*NRYD)
NABCOOR = 3
IF (DABS(ABX).EQ.ZERO) NABCOOR = NABCOOR - 1
IF (DABS(ABY).EQ.ZERO) NABCOOR = NABCOOR - 1
IF (DABS(ABZ).EQ.ZERO) NABCOOR = NABCOOR - 1
NCOLHRR = 0
NROTHRR = 0
IF (SHELLB.NE.0) THEN
NGH = NXYZET
NXYZG = NXYZET
NXYZH = 1
NXYZGO = NXYZET
NXYZHO = 1
NXYZI = NXYZP
SHELLG = SHELLP
NROW = 1
NCOL = NGH
NROT = NGH
DO 100 SHELLH = 1,SHELLB
NXYZGO = NXYZGO - NXYZI
NXYZHO = NXYZHO + SHELLH + 1
NGHO = NXYZGO * NXYZHO
IF (NABCOOR.EQ.3) THEN
M = 1 + SHELLH/3
NROW = NROW + M*(M + ADD (MOD(SHELLH,3)))
ELSE IF (NABCOOR.EQ.2) THEN
NROW = NROW + SHELLH/2 + 1
ELSE IF (NABCOOR.EQ.1) THEN
NROW = NROW + 1
END IF
NCOL = MAX0 (NGHO,NCOL)
NROT = MAX0 (NROW*NGHO,NROT)
NGH = NGHO
NXYZG = NXYZGO
NXYZH = NXYZHO
NXYZI = NXYZI - SHELLG - 1
SHELLG = SHELLG - 1
100 CONTINUE
NCOLHRR = NCOL
NROTHRR = NROT
END IF
M = 0
IF (SHELLC.GT.0) THEN
M = M + 1
NZNXYZ (M) = NXYZC
NZSHELL (M) = SHELLC
END IF
IF (SHELLD.GT.0) THEN
M = M + 1
NZNXYZ (M) = NXYZD
NZSHELL (M) = SHELLD
END IF
IF (M.EQ.0) THEN
ANGMTYP = 'SSXX'
ELSE IF (M.EQ.1) THEN
ANGMTYP = 'SXXX'
ELSE
ANGMTYP = 'XXXX'
END IF
ELSE
NXYZBRA = NXYZA * NXYZB
NXYZT = NXYZBRA * NXYZC * NXYZD
NXYZHRR = NXYZT
M = 0
IF (SHELLA.GT.0) THEN
M = M + 1
NZNXYZ (M) = NXYZA
NZSHELL (M) = SHELLA
END IF
IF (SHELLB.GT.0) THEN
M = M + 1
NZNXYZ (M) = NXYZB
NZSHELL (M) = SHELLB
END IF
IF (SHELLC.GT.0) THEN
M = M + 1
NZNXYZ (M) = NXYZC
NZSHELL (M) = SHELLC
END IF
IF (SHELLD.GT.0) THEN
M = M + 1
NZNXYZ (M) = NXYZD
NZSHELL (M) = SHELLD
END IF
IF (M.EQ.0) THEN
ANGMTYP = 'SSSS'
ELSE IF (M.EQ.1) THEN
ANGMTYP = 'SSSX'
ELSE IF (M.EQ.2) THEN
ANGMTYP = 'SSXX'
ELSE IF (M.EQ.3) THEN
ANGMTYP = 'SXXX'
ELSE
ANGMTYP = 'XXXX'
END IF
END IF
C
C
C ...ready!
C
C
RETURN
END
|