1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
SUBROUTINE ANALYZE(SCRATCH,A)
C
C ANALYZES INTERNAL COORDINATE STRUCTURE, OBTAINS NUMBER OF
C CONFORMATIONAL DEGREES OF FREEDOM AND CHECKS FOR OBVIOUS
C REDUNDANCIES AND POTENTIAL ERRORS IN THE Z-MATRIX INPUT.
C SCRATCH IS THE SAME VECTOR USED IN SUBROUTINE SYMMETRY.
C THIS REQUIRES THE TRANSFORMATION MATRIX FROM CARTESIAN
C DERIVATIVES TO INTERNAL DERIVATIVES, AND USES A SIMPLE
C TOTALLY SYMMETRIC PROPERTY (CLOSELY RELATED TO THE NUCLEAR
C REPULSION ENERGY) AS A REFERENCE FUNTION. NORD IS A AN
C INTEGER SCRATCH ARRAY USED ONLY HERE AND IN DEPENDENTS.
C
C This routine is cleaned up to generate messages that
C make sense for redundent internals. Some of the analysis
C done here is not useful for RICs (not valid).
C Ajith Perera, 04/2006.
C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C
#include "mxatms.par"
#include "flags.h"
#include "jodaflags.com"
#include "cbchar.com"
#include "coord.com"
c
COMMON /MACHSP/ IINTLN, IFLTLN, IINTFP, IALONE, IBITWD
COMMON /USINT/ NX, NXM6, IARCH, NCYCLE, NUNIQUE, NOPT
COMMON /OPTCTL/ IPRNT,INR,IVEC,IDIE,ICURVY,IMXSTP,ISTCRT,IVIB,
$ ICONTL,IRECAL,INTTYP,IDISFD,IGRDFD,ICNTYP,ISYM,IBASIS,
$ XYZTol
C
DIMENSION SCRATCH(6*NATOMS),NORD(6*MXATMS),A(3*NATOMS,NXM6)
Character*5 ChScr(3*MxAtms)
LOGICAL RIC_INUSE
DOUBLE PRECISION ICHGI,ICHGJ
C
IDIDIT=0
NDFU=0
NPFU=0
ITRASH=0
IPNDAP=0
IERR=0
IERROR=0
ZREPUL=0.D0
ICOORE=0
RIC_INUSE = ((iFlags2(h_IFLAGS2_geom_opt) .EQ. 3 .OR.
& iFlags2(h_IFLAGS2_geom_opt) .EQ. 4) .AND.
& iFlags(h_IFLAGS_coord) .EQ. 1)
C
C LOOP THROUGH CARTESIAN COORDINATES AND OBTAIN DERIVATIVES
C OF THE REFERENCE FUNCTION WRT TO CARTESIAN DISPLACEMENTS. DONE
C ANALYTICALLY.
C
CALL ZERO(SCRATCH,6*NATOMS)
#ifdef _DEBUG_LVL0
Write(6,*)
WRITE(6,*)' R VECTOR IN ANALYZE '
Write(6,*)
WRITE(6,'(3f20.12)')(R(I),I=1,NXM6)
14 FORMAT(3(2X,I2))
Write(6,*)
WRITE(6,"(6I4)")(IATNUM(J),J=1,NATOMS)
#endif
NOPT0=NOPT
NDERIV=0
WRITE(6,150)
WRITE(6,149)
WRITE(6,150)
CALL NUCREP(ZREPUL,ICOORE)
C
IF(ICOORE.NE.0)THEN
WRITE(6,547)
WRITE(6,158)
WRITE(6,150)
ELSE
WRITE(6,546)ZREPUL
call dputrec(1, ' ', 'NUCREP', 1, zrepul )
ENDIF
C
149 FORMAT(T3,' Analysis of internal coordinates specified by '
&,'Z-matrix ')
150 FORMAT(80('-'))
158 FORMAT(T3,' Thank you for using the ACES2 program system.')
546 FORMAT(T3,' *The nuclear repulsion energy is ',f10.5,' a.u.')
547 FORMAT(T3,' **PROGRAM ERROR** Problem with coordinate vector.')
C
CALL VADD(SCRATCH,SCRATCH,Q,3*NATOMS,1.D0)
C
C EVALUATE DERIVATIVES IN CARTESIAN REPRESENTATION.
C DIFFERENTIATED FUNCTION IS:
C
C SUM [CHARGE(I)*CHARGE(J)]**0.50/d(I,J)
C I<J
C (TAKING ROOT REDUCES SIZE OF SCALING FACTOR
C FOR HEAVY--HEAVY INTERACTIONS)
C
DO 10 I=1, 3*NATOMS
IXYZ=MOD(I,3)
IF(IXYZ.EQ.0)IXYZ=3
ICUT=3-IXYZ
IATOMI=(I+2)/3
IF(IATNUM(IATOMI).EQ.0)GOTO 10
ICHGI=DFLOAT(IATNUM(IATOMI))**0.50
JBOT=3-ICUT
ZARF=0.D0
DO 50 J=JBOT,3*NATOMS,3
IF(J.EQ.I)GOTO 50
IATOMJ=(J+2)/3
IF(IATNUM(IATOMJ).EQ.0)GOTO 50
ICHGJ=DFLOAT(IATNUM(IATOMJ))**0.50
DISIJ=DIST(Q(3*IATOMI-2),Q(3*IATOMJ-2))
FACTOR=ICHGI*ICHGJ/DISIJ**3
ZARF=ZARF+FACTOR*(SCRATCH(I)-SCRATCH(J))
50 CONTINUE
SCRATCH(3*NATOMS+I)=ZARF
10 CONTINUE
C
#ifdef _DEBUG_LVLM1
Write(6,*)
WRITE(6,*)' Cartesian derivatives of scaled nulear repulsion.'
Write(6,*)
WRITE(6,80)(SCRATCH(3*NATOMS+J),J=1,NXM6)
Write(6,*)
#endif
C
C NOW DETERMINE TOTAL NUMBER OF DEGREES OF FREEDOM WITHIN THE
C TOTALLY SYMMETRIC SUBSPACE.
C
ITRNDF=ITNDF()
C
C DERIVATIVE VECTOR NOW IN TOP HALF OF SCRATCH. TRANSFORM IT
C TO INTERNAL COORDINATES, PLACED IN LOWER PART OF SCRATCH.
C
CALL ZERO(SCRATCH,3*NATOMS)
DO 35 J=1,NXM6
Z1=0.D0
DO 15 I=1,3*NATOMS
15 Z1=SCRATCH(3*NATOMS+I)*A(I,J)+Z1
35 SCRATCH(J)=Z1
C
#ifdef _DEBUG_LVLM1
Write(6,*)
WRITE(6,*)' INT COOR DERIVATIVES '
Write(6,*)
WRITE(6,80)(SCRATCH(J),J=1,NXM6)
WRITE(6,*)
#endif
C
C NOW GO THROUGH LIST OF OPTIMIZED PARAMETERS, COUNTING NUMBER OF
C PROBABLE POSITIVE/NEGATIVE DIHEDRAL ANGLE PAIRS. THEN
C EVENTUALLY (AT THE BOTTOM OF THE 30 DO LOOP)
C DECREMENT NUMBER OF "Z-MATRIX DEGREES OF FREEDOM" (NUMBER
C OF "INDEPENDENTLY" ADJUSTED PARAMETERS) BY THIS NUMBER.
C
IF ((iFlags2(h_IFLAGS2_geom_opt) .EQ. 1)) THEN
C
C This test is meaningless for Cartesian opts.
C
DO 423 I=1,NOPT
ISTP=0
DO 424 J=I+1,NOPT
IF(ISTP.NE.0)GOTO 424
ZIF=DABS(R(ISQUASH(NOPTI(I)))+R(ISQUASH(NOPTI(J))))
IF(ZIF.LT.1.D-6)THEN
ZIF2=DABS(SCRATCH(NOPTI(I))+SCRATCH(NOPTI(J)))
IF(ZIF2.LT.1.D-6.AND.DABS(R(ISQUASH(NOPTI(J))))
& .GT.1.D-6)THEN
IPNDAP=IPNDAP+1
ISTP=1
ENDIF
ENDIF
424 CONTINUE
423 CONTINUE
C
C Endif of iFlags2(h_IFLAGS2_geom_opt) .EQ.1
C
ENDIF
C
C SORT INTERNAL COORDINATE DERIVATIVE VECTOR AND THEN ANALYZE IT.
C
DO 20 I=1,NXM6
NORD(I)=I
20 SCRATCH(I)=DABS(SCRATCH(I))
CALL PIKSR2(NXM6,SCRATCH,NORD)
#ifdef _DEBUG_LVLM1
WRITE(6,*)' SORTED INT COOR DERIVS '
Write(6,*)
WRITE(6,80)(SCRATCH(J),J=1,NXM6)
C WRITE(6,*) (NORD(I), I=1,NXM6)
C WRITE(6,*) (ISQUASH(I), I=1,NXM6)
WRITE(6,*)
#endif
NDF=0
C IF(SCRATCH(1).GT.1.D-6)NDERIV=1
C
C FIRST CHECK TO SEE IF ALL INTERNAL COORDINATES WITH THE
C SAME NAME ARE APPARENTLY EQUIVALENT.
C
DO 501 K = 1, NOPT
DO 502 I = 1, NXM6-1
IF (VARNAM(ISQUASH(NORD(I))).EQ.PARNAM(K)) THEN
DO 503 J = I+1, NXM6
IF (VARNAM(ISQUASH(NORD(J))).EQ.PARNAM(K)) THEN
DENOM = DABS(SCRATCH(I))
IF (DENOM.LT.1.D-12) DENOM = 1.D0
CRIT = DABS(SCRATCH(I)-SCRATCH(J))/DENOM
IF (CRIT.GE.1.D-4) THEN
WRITE(6,155) NORD(I),NORD(J),VARNAM(ISQUASH(NORD(I)))
IERROR = 1
END IF
END IF
503 CONTINUE
END IF
502 CONTINUE
501 CONTINUE
C
IF(IERROR.EQ.1)THEN
WRITE(6,311)
WRITE(6,158)
WRITE(6,150)
Call ErrEx
ENDIF
C
155 FORMAT(T3,'*ERROR* Parameters ',i2,' and ',i2,' are not '
&,'equivalent [both called ',a5,'].')
311 FORMAT(T3,' *Reconstruct Z-matrix and try again.')
C
C NOW LOOP THROUGH PARAMETERS WHICH ARE TO BE OPTIMIZED TO
C MAKE SURE THAT ALL OF THESE CAN HAVE NON-ZERO GRADIENTS.
C
IF ((iFlags2(h_IFLAGS2_geom_opt) .EQ. 1)) THEN
C
C This test is meaningless for pure Cartesian optmizations.
C
DO 840 I=1,NOPT
CHSCR(1)=PARNAM(I)
IERR=0
DO 841 J=1,NXM6
IF(VARNAM(ISQUASH(NORD(J))).EQ.CHSCR(1).AND.
& SCRATCH(J).LT.1.D-8)THEN
WRITE(6,159)VARNAM(ISQUASH(NORD(J))),
& NORD(J)
IERR=IERR+1
ENDIF
841 CONTINUE
C
IF(IERR.GE.1)THEN
ITRASH=ITRASH+1
ENDIF
840 CONTINUE
C
ENDIF
C
IBOT=1
NPNDPC=0
NOPNPC=0
DO 30 I=1,NXM6
IQUIT=0
DENOM=DABS(SCRATCH(I))
IF(DENOM.GT.1.D-15)THEN
ZIFF=DABS(SCRATCH(I+1)-SCRATCH(I))/DENOM
ELSE
ZIFF=DABS(SCRATCH(I+1)-SCRATCH(I))
ENDIF
C
159 FORMAT(T3,'*WARNING* Parameter ',a5,'[',i3,'] cannot have '
&,'a nonzero derivative,',/,T4,' but is being optimized. '
&,' Reconstruction of Z-matrix recommended.')
C
IF ((iFlags2(h_IFLAGS2_geom_opt) .EQ. 1)) THEN
C
C This test is meaningless for full Cartesian opts.
C
IF(ZIFF.LT.1.D-4)THEN
IF(DABS(SCRATCH(I)).GT.1.D-6)THEN
C
C CHECK NOW FOR APPARENT EQUIVALENCES BETWEEN PARAMETERS HAVING
C DIFFERENT NAMES. IF AN EVENT IS ENCOUNTERED, CHECK FIRST TO
C SEE IF IT IS A POS/NEG DIHEDRAL ANGLE PAIR. IF IT ISN'T PRINT
C WARNING MESSAGE. R IS UNSQUASHED IN THIS ROUTINE.
C
IF(IPRNT.GE.100)WRITE(6,154)
& VARNAM(ISQUASH(NORD(I+1))),
& VARNAM(ISQUASH(NORD(IBOT)))
C
IF(VARNAM(ISQUASH(NORD(I+1))).NE.
& VARNAM(ISQUASH(NORD(IBOT))))THEN
CRIT=DABS(R(ISQUASH(NORD(I+1)))+R(ISQUASH(NORD(IBOT))))
IF(CRIT.LT.1.D-8 .AND. .NOT. RIC_INUSE)THEN
WRITE(6,169)VARNAM(ISQUASH(NORD(I+1))),
& VARNAM(ISQUASH(NORD(IBOT)))
ELSE
C
C THIS IS PROBABLY A POS/NEG DIHEDRAL ANGLE PAIR. THIS IS NOT
C A PROBLEM. EXIT LOOP.
C
ENDIF
ENDIF
ENDIF
C Endif for (iFlags2(h_IFLAGS2_geom_opt) .EQ. 1)
ENDIF
C
154 FORMAT(2X,A5,2X,A5,2X,'(*')
169 FORMAT(T3,'*WARNING* Parameters ',a5,' and ',a5,' appear '
&,'to be equivalent.')
C
ELSE
C
C NEW VARIABLE. (NPNDAP IS NUMBER
C OF POSITIVE/NEGATIVE DIHEDRAL ANGLE PAIRS WHICH CAN HAVE NONZERO
C DERIVATIVES, NOPNDP IS NUMBER OF THESE THAT ARE OPTIMIZED).
C INCREMENT NDERIV (THE NUMBER OF DISTINCT PARAMETERS WHICH CAN
C HAVE NONVANISHING GRADIENTS).
C
IBOT=I+1
IDID=0
IDID2=0
IF(SCRATCH(I).GT.1.D-8)NDERIV=NDERIV+1
IF(IPRNT.GE.100)WRITE(6,157)NDERIV,I
NORD(NX+NDERIV)=NORD(I)
IATOM=(NORD(I)+8)/3
IF(NORD(I).EQ.1)IATOM=2
IF(IPRNT.GE.100)WRITE(6,*)IATOM,ZIFF,SCRATCH(I)
IF(ATMASS(IATOM).LT.1.D-3)THEN
C
C DUMMY ATOM. NOW SEE IF THERE IS AN EQUIVALENT VALUE WHICH CORRESPONDS
C TO ONE OF THE ATOMIC ICs. RIGHT NOW, THIS INFORMATION IS NOT USED
C EXTENSIVELY, BUT IT MAY PROVE USEFUL WHEN WE FIGURE OUT A WAY TO
C DETERMINE HOW MANY OF THE Z-MATRIX PARAMETERS HAVE TO BE VARIED TO
C RELEASE ALL CONSTRAINTS ON THE OPTIMIZATION (NOT ALWAYS EQUAL TO ITRN
C
NDFU=NDFU+1
IPSO=0
DO 33 J=I-1,1,-1
IF(IPSO.EQ.1)GOTO 33
ZIFF2=DABS(SCRATCH(J)-SCRATCH(I))
IF(ZIFF2.GT.1.D-5)GOTO 33
JATOM=(NORD(J)+8)/3
IF(NORD(J).EQ.1)JATOM=2
IF(ATMASS(JATOM).GT.1.D-3)THEN
NDF=NDF+1
IPSO=1
ZREF=R(NORD(I))
ENDIF
33 CONTINUE
GOTO 30
ENDIF
IF(SCRATCH(I).LT.1.D-8)GOTO 30
ZREF=R(NORD(I))
NDF=NDF+1
NDFU=NDFU+1
IF(IPRNT.GE.100)WRITE(6,88)I,NDF
ENDIF
30 CONTINUE
C
NOPT0=NOPT-IPNDAP
C
88 FORMAT(T3,' On cycle ',i2,' NDF incremented to ',i3)
157 FORMAT(T3,' NDERIV incremented to ',i2,' on cycle ',i3)
C
C NOW PRINT OUT WHAT WE HAVE LEARNED.
C
C WRITE(6,170)NDF (WE DON'T KNOW HOW TO DETERMINE THIS YET.)
C170 FORMAT(T3,' *In the Z-matrix, there are ',i3,' parameters which '
C ,'must be optimized.')
C
IF(ITRNDF.EQ.1)WRITE(6,152)ITRNDF
C
C This is somewhat cheating. In the case of RIC we assume all the
C degrees of freedoms that are optimized belong to the totally
C symmetric subspace (until we develop a routine similar to ITNDF
C that works with RICs not with Cartesian directions per symmetry
C equivalent atoms. It can be done. All we need is to find out
C how many uniques RICs and then subtract the rotational and vibrational
C degrees of freedoms that transform as totaly symm. Unfotunately,
C I don't see the value of it since redundent simply implies
C that we are optimizing more than minimum required. Ajith Perera,04/2006.
C
IF(ITRNDF.GT.1 .AND. .NOT. RIC_INUSE) THEN
WRITE(6,151)ITRNDF
ELSE
WRITE(6,151)NOPT
ENDIF
C
WRITE(6,171)NOPT
IF(IPNDAP.GT.0)THEN
WRITE(6,545)IPNDAP,NOPT0
ENDIF
ICON=2
C
IF (RIC_INUSE) THEN
ICON =0
WRITE(6,176)
ELSE
C
IF(ITRNDF.EQ.NOPT0.AND.ITRASH.EQ.0.AND.NDERIV.EQ.ITRNDF)THEN
WRITE(6,172)
ICON=0
ELSEIF(ITRNDF.EQ.NOPT0.AND.ITRASH.EQ.0.AND.NDERIV.GT.
& ITRNDF)THEN
WRITE(6,142)
ICON=11
ELSEIF(ITRNDF.GT.NOPT0)THEN
ICON=-1
WRITE(6,173)
ELSEIF(ITRNDF.LT.NOPT0.AND.NDERIV.EQ.NOPT0)THEN
ICON=1
WRITE(6,174)
ELSEIF(ITRNDF.LT.NOPT0.AND.NDERIV.GT.NOPT0)THEN
ICON=6
WRITE(6,178)
ENDIF
ENDIF
C
142 FORMAT(T3,' *Although the number of optimized parameters is '
&,'equal to the true ',/,t4,' number of degrees of freedom, '
&,' the optimization may be constrained.')
151 FORMAT(T3,' *There are ',i3,' degrees of freedom within the '
&,'tot. symm. molecular subspace.')
152 FORMAT(T3,' *There is ',i3,' degree of freedom within the '
&,'tot. symm. molecular subspace.')
171 FORMAT(T3,' *Z-matrix requests optimization of ',i3,
&' coordinates.')
172 FORMAT(T3,' *The optimization is unconstrained and your Z-matrix '
&,'is great.')
173 FORMAT(T3,' *The optimization is constrained.')
174 FORMAT(T3,' *The optimization problem may be overdetermined:')
176 FORMAT(T3,' *The RIC optimization is unconstrained and your',
& ' input is great.')
178 FORMAT(T3,' *The optimization problem is poorly defined by '
&,'your Z-matrix, and may be',/,T4,'overdetermined.')
545 FORMAT(T3,' *There are ',i3,' positive-negative dihedral '
&,'angle pairs, ',/,t4,' resulting in ',i3,' Z-matrix '
&,'degrees of freedom.')
C
IF(ICON.NE.0)THEN
C
WRITE(6,180)NDERIV
WRITE(6,181)(VARNAM(ISQUASH(NORD
& (3*NATOMS+J))),NORD(3*NATOMS+J),J=1,NDERIV)
WRITE(6,183)NOPT
WRITE(6,181)(PARNAM(K),NOPTI(K),K=1,NOPT)
C
#ifdef _DEBUG_LVLM1
Print*, "NORD with offset"
Write(6,*)
Print*, (NORD(3*NATOMS+I), I=1, NXM6)
Write(6,*)
#endif
C
180 FORMAT(T3,' *The following ',I3,' parameters can have non-zero',
& 'derivatives within the ',/,t4, ' totally symmetric ',
& 'subspace:')
181 FORMAT((T14,6(A5,'[',I3,']',2x)))
183 FORMAT(T3,' *The following ',I3,' parameters are to be '
& ,'optimized:')
C
C BLOW OFF THIS LOOP IF NPFU.NE.0 - THIS IS LIKELY TO BE UNUSUAL
C (CORRESPONDING TO OPTIMIZING ONLY ONE PART OF AN EQUIVALENT
C POS/NEG DIHEDRAL PAIR). WITH MORE THOUGHT, THIS LOOP CAN BE
C ADJUSTED FOR NONZERO NPFUs, BUT LEAVE IT OUT FOR NOW.
C
IF(NPFU.EQ.0)THEN
IF(ICON.EQ.11)WRITE(6,198)
IF(ICON.EQ.-1.AND.NDF.NE.NDFU)WRITE(6,191)ITRNDF-NOPT0
C
IF(ICON.EQ.11)THEN
WRITE(6,190)
WRITE(6,290)
ENDIF
C
IF(ICON.EQ.1)THEN
WRITE(6,193)NOPT0-ITRNDF
ENDIF
C
IF(ICON.EQ.6)THEN
WRITE(6,193)NOPT0-ITRNDF
WRITE(6,190)
ENDIF
190 FORMAT(T3,' *Care should be taken that the following coordinates '
&,'are dependent ',/,t4,' upon the set of optimized parameters.')
193 FORMAT(T3,' *Among the set of internal coordinates listed above, '
&,'it is possible that ',/,t4,' as many as ',i3,' may be fixed ')
198 FORMAT(T3,' *There is room for improvement in the Z-matrix.')
290 FORMAT(T3,' *If this is true, optimization is unconstrained.')
191 FORMAT(T3,' *Among the set of internal coordinates listed below, '
&,'at least ',/,t4,i3,' must be allowed to vary. Those not '
&,'varied must not be independent',/,t4,' coordinates.')
C
IF(ICON.EQ.-1.AND.NDF.EQ.NDFU)WRITE(6,192)
IDEP=0
C
DO 890 I=1,NDERIV
IDP=0
DO 891 J=1,NOPT
891 IF(VARNAM(ISQUASH(NORD(3*NATOMS+I))).NE.PARNAM(J))IDP=IDP+1
IF(IDP.EQ.NOPT)THEN
IDEP=IDEP+1
NORD(IDEP)=NORD(3*NATOMS+I)
CHSCR(IDEP)=VARNAM(ISQUASH(NORD(3*NATOMS+I)))
ENDIF
890 CONTINUE
C
WRITE(6,181)(CHSCR(JX),NORD(JX),JX=1,IDEP)
WRITE(6,150)
IDIDIT=1
C
ENDIF
ENDIF
IF(IDIDIT.EQ.0)WRITE(6,150)
C
80 FORMAT(3(2X,F20.14))
192 FORMAT(T3,' *The following coordinates must be varied in an '
&,' unconstrained optimization.')
C
RETURN
END
C
CSSS129 FORMAT(T3,' *Parameters ',a5,' and ',a5,' are '
CSSS & ,'a pos/neg dihedral angle pair.')
CSSS141 FORMAT(T3,' *The optimization will be unconstrained only if '
CSSS &,'the following parameters',/,t4,' do not represent independent '
CSSS &,'coordinates.')
CSSS145 FORMAT(T3,' *All of these are optimized, meaning that '
CSSS &,'that there ',/,t4,' are ',i3,' Z-matrix degrees of '
CSSS &,'freedom.')
CSSS192 FORMAT(T3,' *The following coordinates must be varied in an '
CSSS &,' unconstrained optimization.')
CSSS345 FORMAT(T3,' *Of these,',i3,' are optimized, meaning that '
CSSS &,'that there ',/,t4,' are ',i3,' Z-matrix degrees of '
CSSS &,'freedom.')
|