1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
#include "flags.h"
SUBROUTINE SUMMARY(SCRATCH, RFAMAT, GRD, SCALE, STPMAG,
& IQFIX, NOPT, NX, NXM6, IBREAK, ICONTL,
& LUOUT, NCYCLE, LUDONE, BMATRIX,
& HES_INTACT, FSCR, VEC, STEP)
C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
#include "mxatms.par"
#include "cbchar.com"
#include "coord.com"
integer ishell
external ishell
CHARACTER*5 a5, a5b
CHARACTER*1 DISTANCE
INTEGER TOTREDNCO
DOUBLE PRECISION OPT_GEOMETRY
LOGICAL bDonFil, skip, XYZIN, NWFINDIF, I_UNIQUE(MAXREDUNCO),
& Hessian_calcs, Geomopt_numrcl
C
DIMENSION SCRATCH(NX*NX), RFAMAT(NOPT, NOPT), VEC(NOPT),
& GRD(NXM6), BMATRIX(NXM6*NX),
& HES_INTACT(NX*NX), FSCR(NX*NXM6),
& IREDUNCO(4, MAXREDUNCO), IQFIX(3*NATOMS, 3*NATOMS),
& STEP(NXM6)
C
COMMON /INPTYP/ XYZIN,NWFINDIF
C
C
Common /Orient/ Orient(3,3)
c
#include "machsp.com"
C#define MONSTER_FLAGS /* use ioppar */
#include "jodaflags.com"
C
C Do some Printing
C
WRITE(LUOUT, 88)STPMAG, SCALE
88 FORMAT(T3,' Summary of Optimization Cycle: ',/,T3,
& ' The maximum unscaled ',
& 'step is: ',F10.5,'.',/,T3,' Scale factor set to: ',
& F8.5,'.')
C
WRITE(LUOUT, 93)
93 FORMAT(T3,' Forces are in hartree/bohr and hartree/radian.',
& /,T3,' Parameter values are in Angstroms and degrees.')
C
WRITE(LUOUT, 81)
WRITE(LuOut, 881)
WRITE(LuOut, 81)
881 FORMAT(T3,'Parameter',T17,'dV/dR',T33,'Step',T47,'Rold',
& T63,'Rnew')
C
DO 15 I=1, NOPT
C
DO 23 J =1, I - 1
IF (VARNAM(ISQUASH(NOPTI(I))) .EQ.
& VARNAM(ISQUASH(NOPTI(J)))) GOTO 15
23 CONTINUE
CNF = 180.0D0/DACOS(-1.D0)
IF (.NOT. XYZIN) THEN
IF (MOD(ISQUASH(NOPTI(I)),3) .EQ. 1) CNF = 0.529177249D0
ELSE
DISTANCE = VARNAM(NOPTI(I))
IF (DISTANCE .EQ. "R") CNF = 0.529177249D0
ENDIF
ZOP = SCRATCH(I) - SCRATCH(NOPT+I)
C
WRITE(LUOUT, 84)VARNAM(ISQUASH(NOPTI(I))), GRD(NOPTI(I)),
& SCRATCH(NOPT+I)*CNF, ZOP*CNF,
& SCRATCH(I)*CNF
C
15 CONTINUE
C
84 FORMAT(T5,A,T10,4(F15.10,1X))
C
C Generate statistics based on gradients
C
CALL ZERO(RFAMAT, NOPT*NOPT)
C
DO 432 I =1, NOPT
RFAMAT(I, 1) = GRD(NOPTI(I))
432 CONTINUE
C
CALL VSTAT(RFAMAT, SCRATCH(2*NOPT + 1), NOPT)
C
WRITE(LUOUT,82) SCRATCH(2*NOPT + 2),SCRATCH(2*NOPT + 5)
82 FORMAT(74('-'),/,T3,'Minimum force: ',F12.9,' / RMS force: ',
& F12.9)
81 FORMAT(74('-'))
C
C see if the calcualtion has converged
C
IF ( (SCRATCH(2*NOPT + 5) .LT. 10.D0**(-1*ICONTL) ) .AND.
& (IBREAK .EQ. 0) ) THEN
C
WRITE(6,1321)
1321 FORMAT(80('-'))
WRITE(6,1325)10.D0**(-1*ICONTL)
1325 FORMAT(T3,' RMS gradient is below ',E10.5,'.')
WRITE(6,1322)
1322 FORMAT(T3,' Convergence criterion satisfied. Optimization ',
& 'completed.')
WRITE(6,1321)
CALL ADM
cmn
c write optimized values of coordinates in table
c for use with vibrational freq. calculation.
c
c The coordinates printed correspond to the geometry that generated the
c last set of energetics, i.e., the geometry whose gradient is below the
c convergence criterion.
C
IF (Iflags2(h_IFLAGS2_geom_opt) .GE. 3) THEN
C
write(6,*)
write(6,*) ' Summary of optimized internal coordinates'
write(6,*) ' (Angstroms and degrees)'
write(6,*) (Iflags2(h_IFLAGS2_geom_opt))
CALL IGETREC(20, 'JOBARC', 'REDNCORD', 1, TOTREDNCO)
CALL IGETREC(20, 'JOBARC', 'UNIQUEDF', TOTREDNCO, I_UNIQUE)
CALL IGETREC(20, 'JOBARC', 'CONTEVIT', 4*TOTREDNCO,
& IREDUNCO)
DO I=1,NOPT
if (I_UNIQUE(NOPTI(I))) then
c o remove spaces
a5b=VARNAM(ISQUASH(NOPTI(I)))
a5=' '
l=0
do k=1,5
if (a5b(k:k) .ne. ' ') then
l = l+1
a5(l:l) = a5b(k:k)
endif
enddo
c >R01 : 2 1 = 1.0796431125
c >R03 : 4 1 = 1.3252448582
c >A01 : 2 1 3 = 116.8470115097
c >A02 : 2 1 4 = 121.5764336125
c >D01 : 5 4 1 2 = 0.0000000000
c >D02 : 5 4 1 3 = 180.0000000000
INDEX = ISQUASH(NOPTI(I))
DISTANCE = VARNAM(INDEX)
OPT_GEOMETRY = SCRATCH(I) - SCRATCH(NOPT+I)
IF (DISTANCE .EQ. "R") THEN
CNF = 0.529177249D0
WRITE(LUOUT, 9) a5, IREDUNCO(1, INDEX),
& IREDUNCO(2, INDEX),
& OPT_GEOMETRY*CNF
9 FORMAT(A5,T6,':',2(1X,I2),9X,"=",F17.10)
ELSE IF (DISTANCE .EQ. "A") THEN
CNF=180.D0/DACOS(-1.D0)
WRITE(LUOUT, 99) a5, IREDUNCO(1, INDEX),
& IREDUNCO(2, INDEX),
& IREDUNCO(3, INDEX),
& OPT_GEOMETRY*CNF
99 FORMAT(A5,T6,':',3(1X,I2),6X,'=',F17.10)
ELSE
CNF=180.D0/DACOS(-1.D0)
WRITE(LUOUT, 999) a5, IREDUNCO(1, INDEX),
& IREDUNCO(2, INDEX),
& IREDUNCO(3, INDEX),
& IREDUNCO(4, INDEX),
& OPT_GEOMETRY*CNF
999 FORMAT(A5,T6,':',4(1X,I2),3X,"=",F17.10)
END IF
c end if (I_UNIQUE(NOPTI(I)))
end if
c END DO I=1,NOPT
END DO
c o print out the Cartesian coordinate matrix (broken)
write(6,*)
write(6,*) ' Summary of optimized Cartesian coordinates (Bohr) '
write(6,*)
C
CALL DGETREC(20, 'JOBARC', 'COORD_OP',3*NATOMS, Q)
C
IOFF=1
DO I=1,NATOMS
1000 FORMAT(T6,A,T10,F14.8,T25,F14.8,T40,F14.8)
WRITE(6,1000)ZSYM(I)(1:2),(Q(J),J=IOFF,IOFF+2)
IOFF=IOFF+3
END DO
c ELSE IF (INTERNAL)
ELSE IF (Iflags2(h_IFLAGS2_geom_opt) .EQ. 1) THEN
C
write(6,*)
write(6,*) ' Summary of optimized internal coordinates'
write(6,*) ' (Angstroms and degrees)'
write(6,*) (Iflags2(h_IFLAGS2_geom_opt))
DO I=1,NOPT
OPT_GEOMETRY = SCRATCH(I) - SCRATCH(NOPT+I)
skip = .false.
do J=1,I-1
skip = skip.or.
& (VARNAM(ISQUASH(NOPTI(I))).EQ.
& VARNAM(ISQUASH(NOPTI(J))) )
end do
if (.not.skip) then
c o remove spaces
a5b=VARNAM(ISQUASH(NOPTI(I)))
a5=' '
l=0
do k=1,5
if (a5b(k:k) .ne. ' ') then
l = l+1
a5(l:l) = a5b(k:k)
endif
enddo
IF (MOD(ISQUASH(NOPTI(I)),3).EQ.1) THEN
CNF=0.529177249D0
ELSE
CNF=180.D0/DACOS(-1.D0)
END IF
WRITE(LuOut,184) A5, OPT_GEOMETRY*CNF
184 FORMAT(A5,T6,'=',F17.10)
c end if (.not.skip)
end if
c END DO I=1,NOPT
END DO
c ELES IF (Pure Cartesian)
C
ELSE IF (Iflags2(h_IFLAGS2_geom_opt) .EQ. 2) THEN
C
c o print out the Cartesian coordinate matrix (broken)
write(6,*)
write(6,"(a,a)") ' Summary of optimized Cartesian',
& ' coordinates (Bohr) '
write(6,*)
C
CALL DGETREC(20, 'JOBARC', 'COORD_OP',3*NATOMS, Q)
C
IOFF=1
DO I=1,NATOMS
WRITE(6,1000)ZSYM(I)(1:2),(Q(J),J=IOFF,IOFF+2)
IOFF=IOFF+3
END DO
C
C ENDIF (Iflags2(h_IFLAGS2_geom_opt))
C
ENDIF
WRITE(LUOUT,*)
cmn end
C o Let's also update the archive file.
C
C Unpak the scratch array and regenerate the full R vector. Also
C unpak the step vector to avoid any problems with Hessian updates
C in the next cycle.
C
DO J = 1, NOPT
C
INDEX = ISQUASH(NOPTI(J))
DISTANCE = VARNAM(INDEX)
IF (DISTANCE .EQ. "R") THEN
CNF = 0.529177249D0
ELSE IF (DISTANCE .EQ. "A") THEN
CNF=180.D0/DACOS(-1.D0)
ELSE
CNF=180.D0/DACOS(-1.D0)
END IF
R(NOPTI(J)) = (SCRATCH(J) - SCRATCH(NOPT+J))
STEP(NOPTI(J)) = SCRATCH(J + NOPT)
C
DO K=1, NEQ(NOPTI(J))
C
STEP(IQFIX(NOPTI(J), K)) = SCRATCH(J + NOPT)
R(IQFIX(NOPTI(J), K)) = (SCRATCH(J) -
& SCRATCH(NOPT+J))
ENDDO
ENDDO
C
C The following calls do anything useful only when the optimizations
C are done numerically, and diretcly followed by frequency calculation
C with analytical or numerical second derivatives.
C What we need is the Cartesian coordinates of the optimized geometry
C in COORD jobarc record. In the case of analytical optimizations the
C previous step correspond to the optimized geometry and this call
C is simply a duplication. However, that is not the case for
C numerical optimizations (the record contains the coordinates of the
C last dispalced point). Note to Anthony: this will effect the
C tests that use numerical gradients.
C
Call igetrec(20, 'JOBARC', 'IFLAGS ', 100, Iflags)
Call igetrec(20, 'JOBARC', 'IFLAGS2 ', 500, Iflags2)
Hessian_calcs = (Iflags(h_IFLAGS_vib) .NE. 0)
Geomopt_numrcl = (Iflags2(h_IFLAGS2_grad_calc) .EQ. 2
& .AND. Iflags2(h_IFLAGS2_geom_opt)
& .NE. 0)
c
#ifdef _DEBUG_LVL0
Write(6,*) "The internal coord:"
Write(6,10) (R(I), I=1, NXM6)
Write(6,*)
Write(6,*) "The step size:"
Write(6,*)
Write(6,10) (STEP(I), I=1, NXM6)
Write(6,*)
Print*, "The optimization cycle:", NCYCLE
Print*, "Joda flag, grad_calc and geoom_opt",
& Iflags2(h_IFLAGS2_grad_calc),
& Iflags2(h_IFLAGS2_geom_opt)
Print*, "Internal flags; Hessian & geo. optimization:",
& Hessian_calcs, Geomopt_numrcl
10 Format(5(1X,F10.6))
#endif
c
If (Hessian_calcs .OR. Geomopt_numrcl) Then
Call GMetry(.TRUE., .FALSE.)
IStart = 1
Iscr = Istart + NX*3
IQtmp = Iscr + NX
IQnew = IQtmp + NX
Call Symmetry(Scratch(Istart), Scratch(Iscr),
& Scratch(IQtmp), .FALSE.)
Call dputrec(20, 'JOBARC', 'COORD ', NX, Q)
Call dputrec(20, 'JOBARC', 'CORD_INT', NX, R)
#ifdef _DEBUG_LVL0
Write(6,*)
Print*, "The variable from summary"
Write(6,20) "The Cartesian coord:", (Q(i), i=1, NX)
20 Format(A20, 3(1X, F10.6))
#endif
Endif
c
c call iputrec(20, 'JOBARC', 'CYCL2CON', 1, NCYCLE)
c call archive(0.0D0, GRD, HES_INTACT, STEP, 0, VEC)
c
C Marshall's request to provide the frequencies of the updated Hessian
C might be a good idea. The frequencies of the updated Hessian at the
C last step might give a clue about the character of the stationary
C point. If this approx. test passes, then the expensive "exact"
C frequency calculation should be done. Ajith Perera, 05/2005.
CALL GEN_APPROX_FREQ(SCRATCH, BMATRIX, FSCR, HES_INTACT)
c o signal the end of the calculation
call igetrec(1,'JOBARC','JODADONE',1,i)
if (i.ne.0) then
print *, '@SUMMARY: JODADONE is already true.'
print *, ' Something is very wrong.'
end if
call iputrec(1,'JOBARC','JODADONE',1,1)
call iputrec(1,'JOBARC','HAVEGEOM',1,1)
c o remove the backup directory
call rm_backup
c CALL ACES_JA_FIN
c STOP
END IF
RETURN
END
|