File: symmetry_auto.F

package info (click to toggle)
aces3 3.0.6-7
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 82,460 kB
  • sloc: fortran: 225,647; ansic: 20,413; cpp: 4,349; makefile: 953; sh: 137
file content (1150 lines) | stat: -rw-r--r-- 42,575 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
C  Copyright (c) 2003-2010 University of Florida
C
C  This program is free software; you can redistribute it and/or modify
C  it under the terms of the GNU General Public License as published by
C  the Free Software Foundation; either version 2 of the License, or
C  (at your option) any later version.

C  This program is distributed in the hope that it will be useful,
C  but WITHOUT ANY WARRANTY; without even the implied warranty of
C  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C  GNU General Public License for more details.

C  The GNU General Public License is included in this distribution
C  in the file COPYRIGHT.
#include "flags.h" 
      SUBROUTINE SYMMETRY_AUTO(SCRATCH, QTMP, NEWQ, IT, IDEGEN, 
     &                         ORIEN2, NOSILENT)
C
C     SUBROUTINE DOES SYMMETRY ANALYSIS AND PUTS MOLECULE IN AN
C     ORIENTATION THAT ACES2 CAN DEAL WITH
C
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
#include "mxatms.par"
#include "fnamelen.par"
#include "coord.com"

      DOUBLE PRECISION IT(3,3),CM(3),IV(3,3),NEWQ(NX),dtmp
      DOUBLE PRECISION RM(3,3),QTMP(NX),TATB(3)
      DOUBLE PRECISION SCRATCH(3*NX),MOLWT,ORIEN2(9)
      LOGICAL ALLDONE,ITWOAX, TSSEARCH, NOSILENT 

cSB START
      logical olddone,tetrah
cSB END

      LOGICAL OPTRES
      CHARACTER*3 SYMSTR(6)
      CHARACTER*4 some_string_func, JNKSTR, TMPGRP
      CHARACTER*2 XYZP(3)
      CHARACTER*1 XYZ(3),DOSTR(3),CHRTMP
      CHARACTER*(fnamelen) FNAME
      INTEGER ORDNEW,ORDOLD,IORGRP
      LOGICAL YESNO,SAXIS,SKIP,XYZIN,NWFINDIF
      DIMENSION NORD(3*MXATMS),IORBPOP(MXATMS)
      DIMENSION IORBREF(MXATMS)
      COMMON /FLAGS/ IFLAGS(100),IFLAGS2(500)
      COMMON /TOLERS/ SYMTOL,DEGTOL
      COMMON/RESTART2/OPTRES
      COMMON /USINT/ NX, NXM6, IARCH, NCYCLE, NUNIQUE, NOPT
C     Main OPTIM control data
C     IPRNT   Print level - not used yet by most routines
C     INR     Step-taking algorithm to use
C     IVEC    Eigenvector to follow (TS search)
C     IDIE    Ignore negative eigenvalues
C     ICURVY  Hessian is in curviliniear coordinates
C     IMXSTP  Maximum step size in millibohr
C     ISTCRT  Controls scaling of step
C     IVIB    Controls vibrational analysis
C     ICONTL  Negative base 10 log of convergence criterion.
C     IRECAL  Tells whether Hessian is recalculated on each cyc
C     INTTYP  Tells which integral program is to be used
C              = 0 Pitzer
C              = 1 VMol
C     XYZTol  Tolerance for comparison of cartesian coordinates
C
      COMMON /OPTCTL/ IPRNT,INR,IVEC,IDIE,ICURVY,IMXSTP,ISTCRT,IVIB,
     $     ICONTL,IRECAL,INTTYP,IDISFD,IGRDFD,ICNTYP,ISYM,IBASIS,
     $     XYZTol
      COMMON /INPTYP/ XYZIN, NWFINDIF
C
#include "cbchar.com"
C
      CHARACTER*(5*MXATMS) ZSYMUNI
C
      INTEGER    LuArc
      PARAMETER (LuArc  = 77)
      CHARACTER*(*) ArcFil
      PARAMETER    (ArcFil = 'OPTARC ')
#include "io_units.par"
C     Symmetry Information
C     FPGrp   Full point group
C     BPGrp   Largest Abelian subgroup
C     PGrp    "Computational" point group
      Character*4 FPGrp, BPGrp, PGrp
      Common /PtGp_com/ FPGrp, BPGrp, PGrp
      Common /Orient/ Orient(3,3)
      COMMON /MACHSP/ IINTLN,IFLTLN,IINTFP,IALONE,IBITWD
      DATA XYZ /'X','Y','Z'/
      DATA XYZP /'YZ','XZ','XY'/
      DATA ONE   / 1.0D+00/
      DATA ONEM  /-1.0D+00/
      DATA ZILCH / 0.0D+00/
      DATA IONE /1/
      IND(I,J) = 3*(I-1)+J
c
c
      CALL GETCREC(-1, 'JOBARC', "PTGP    ", 4, FPGRP) 
      TMPGRP=FPGRP
      FPGRP='    '
      DTOR=DACOS(ONEM)/180.D0
C
C INITIALIZE MILLIONS OF VARIABLES THAT CFT77 SAYS AREN'T INITIALIZED.
C
      OLDDONE=.FALSE.
      IHIGH=0
      IROT=0
      IREF=0
      IINV=0
      IDGRP=0
      ILINEAR=0
      ICOMP=0
      ICOUNT=0
      IDONE=0
      ISINV=0
      ICOMPQ=0
      IIAX=0
      ORDIS=0
      IERR=0
      ISET=0
      NUMB=0
      ICOMP2=0
      IHIGHX=0
      ISAXIS=0
      JCOMPX=0
      JCOMP=0
      ICOMPX=0
      ISKIP=0
      DOSTR(1)='X'
      DOSTR(2)='Y'
      DOSTR(3)='Z'
      TSSEARCH = (INR .EQ. 4 .OR. INR .EQ. 5 .OR. INR .EQ. 6)
c      CALL IZERO(IORBPOP,MXATMS)
c      CALL IZERO(IORBREF,MXATMS)
      do i = 1, mxatms
         iorbpop(i) = 0
         iorbref(i) = 0
      enddo

      IF(IDEGEN.EQ.0)THEN
C IDEGEN is zero for Abelian point groups. We can transfer the
C logic to statement 9000 (only symmetry operations
C that we need to deal with is rotation, reflection, and inversion).
C It looks like that this goto 9000 can not be easily avoided.
        GOTO 9000
      ENDIF
C This 777 entry point is used when the degeneracy found by
C inertia matrix was accidental.
  777 CONTINUE
C
C****************************************************************
C
C CODE FOR POINT GROUPS WITH DOUBLY DEGENERATE REPRESENTATIONS.
C
C****************************************************************
      IF(IDEGEN.EQ.1)THEN
C
C     IF DOUBLY DEGENERATE, CHECK TO MAKE SURE THAT THE PRINCIPAL AXES
C     ARE PARALLEL TO X,Y AND Z.  IF NOT, ROTATE ORIENTATION TO THIS
C     POINT.
C
        FPGRP = '    '
        IF(IPRNT .GE. 3 .AND. NOSILENT)WRITE(LUOUT,8002)
        DO 1541 I=1,3
 1541   IF(DABS(IT(I,I)).LT.SYMTOL)ILINEAR=1
        IF(ILINEAR.EQ.1)THEN
          IF(IPRNT .GE. 3 .AND. NOSILENT)WRITE(LUOUT,8004)
C
C Linear molecules can be handled by rotation, reflection,
C and inversion, so transfer the logic to 9000
C
          GOTO 9000
        ENDIF
C
C IDENTIFY HIGHEST ORDER ROTATIONAL AXIS (CHECK THROUGH 24 )
C
        DO 10001 I = 2,24
          ZANG = 360.D0/DFLOAT(I)
          DO 10000 J = 3,3
            CALL DOSYOP('C',I,1,J,NATOMS,NEWQ,SCRATCH,IERR,0)
            CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMP,
     &                   SYMTOL)
            IF(ICOMP.EQ.0)THEN
              IF (XYZIN) CALL IPUTREC(20, "JOBARC", "SYMEQUIV", 
     &                               NATOMS, NORD)
              IHIGH  = I
              IHIGHX = J
              IF(IPRNT.GE.4 .AND. NOSILENT)WRITE(LUOUT,3150)XYZ(J),I
 3150         FORMAT(T3,'@SYMMETRY-I, ',A1,' is a C[',I2,'] axis.')
            ENDIF
10000     CONTINUE
10001   continue
C
        IF (XYZIN) CALL IPUTREC(20, "JOBARC", "HIGHSTAX", 1, IHIGH) 
C
        IF(IPRNT .GE. 4 .AND. NOSILENT)WRITE(LUOUT,800)IHIGH,
     &                                 XYZ(IHIGHX)
  800   FORMAT(T3,'@SYMMETRY-I, The highest order rotational ',
     &       'axis is C[',i2,'] about ',A1,'.')
        IF(IHIGH.EQ.0)THEN
          IF (IPRNT .GE. 4 .AND. NOSILENT)  WRITE(6,9301)
 9301     FORMAT(T3,'@SYMMETRY-W, An accidental degeneracy is present.',
     &         ' Analysis might be wrong.')
C
          CALL PERPOP2('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,SYMTOL,
     &         IFOUND)
          IF(IFOUND.NE.1)THEN
            CALL PERPOP2('P',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,SYMTOL,
     &           IFOUND)
          ENDIF
          IDEGEN=0
          GOTO 777
        ENDIF
C
C CHECK FOR S(2n) AXIS
C
        CALL DOSYOP ('S',2*IHIGH,1,IHIGHX,NATOMS,NEWQ,SCRATCH,IERR,
     &       IMODE)
        CALL COMPARE(SCRATCH,NEWQ,ATMASS,NORD,NATOMS,ICOMP,SYMTOL)
        SAXIS=(ICOMP.EQ.0)
        IF (SAXIS) CALL IPUTREC(20, "JOBARC", "SYMEQUIV", NATOMS, NORD)
        IF(IPRNT.GT.10.AND.SAXIS .AND. NOSILENT)WRITE(6,9503)
 9503   FORMAT(T3,'@SYMMETRY-I, S(2n) axis found.')
C
C NOW CHECK FOR PERPENDICULAR C2 AXES.  THIS SEPARATES D AND C
C GROUPS.  THE LATTER ARE HANDLED FIRST.
C
        CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,SYMTOL,IFOUND)
        IF(IFOUND.EQ.1)THEN
          IF(IPRNT.GT.10 .AND. NOSILENT)WRITE(6,9501)
 9501     FORMAT(T3,'@SYMMETRY-I, Perpendicular C2 axis found.')
C
          FPGRP='DN  '
C
C CHECK FOR HORIZONTAL PLANE NOW
C
          CALL DOSYOP('P',1,1,3,NATOMS,NEWQ,SCRATCH,IERR,IMODE)
          CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMPX,SYMTOL)
C
          IF(ICOMPX.EQ.0)THEN
          IF (XYZIN) CALL IPUTREC(20, "JOBARC", "SAMEPLNE", NATOMS,
     &                           NORD)
            FPGRP='DNh '
            IF(IPRNT.GT.10 .AND. NOSILENT)WRITE(6,9502)
 9502       FORMAT(T3,'@SYMMETRY-I, Horizontal plane found.')
          ENDIF
          IF(SAXIS)FPGRP='DNd '
          IF (SAXIS .AND. XYZIN) THEN
             CALL DOSYOP('C', 8, 1, 3, NATOMS, NEWQ, SCRATCH, IERR, 0)
             CALL DCOPY(3*NATOMS, NEWQ, 1, SCRATCH(3*NATOMS+1), 1)
             CALL REFLECT(SCRATCH,NEWQ,NATOMS,1)
             CALL COMPARE(NEWQ, SCRATCH, ATMASS, NORD, NATOMS, ICOMP,
     &                    SYMTOL)
             CALL DCOPY(3*NATOMS, SCRATCH(3*NATOMS+1), 1, NEWQ, 1)
             CALL IPUTREC(20, "JOBARC", "SAMEPLNE", NATOMS,
     &                   NORD)
          ENDIF
        ENDIF
C
        IF(FPGRP.EQ.'    ')THEN
C
C THIS IS NOT A D GROUP, SO WE KNOW THAT IT IS EITHER CN, CNv, CNh
C OR MAYBE SN.  PROCEED WITH LOGIC.
C
C FIRST CHECK FOR HORIZONTAL PLANE - THIS ESTABLISHES THE POINT GROUP
C AS CNh
C
          CALL DOSYOP ('P',1,1,3,NATOMS,NEWQ,SCRATCH,IERR,IMODE)
          CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMP,SYMTOL)
          IF(ICOMP.EQ.0)THEN
            FPGRP='CNh '
          IF (XYZIN) CALL IPUTREC(20, "JOBARC", "SAMEPLNE", NATOMS,
     &                           NORD)
            IF(IPRNT.GT.10 .AND. NOSILENT)WRITE(6,9502)
            GOTO 9000
          ENDIF
C
C CNv OR CN ?  THIS CAN BE DETERMINED BY PRESENCE OR ABSENCE OF
C PLANES CONTAINING THE SYMMETRY AXIS.  CHECK FOR THESE NOW.
C
          CALL PERPOP('P',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,SYMTOL,IFOUND)
          IF(IFOUND.EQ.1)FPGRP='CNv '
        ENDIF
        IF(FPGRP.EQ.'    ')THEN
          FPGRP='CN  '
          IF(SAXIS)THEN
            FPGRP='SN  '
            IHIGH=2*IHIGH
          ENDIF
        ENDIF
      ENDIF
C****************************************************************
C
C CODE FOR CUBIC POINT GROUPS.  BY FAR THE MOST COMPLICATED PART.
C
C****************************************************************
      IF(IDEGEN.EQ.2)THEN
        ALLDONE=.FALSE.

cSB the following is no longer necessary, it is left only so that
c   the cartesian coordinates are exactly identical to the old
c   version of joda
        itwoax =.false.
        tetrah =.false.
cSB

        IF(IPRNT .GE. 3 .AND. NOSILENT)WRITE(LUOUT,8003)
C
C CHECK FOR INVERSION SYMMETRY.
C
        DO 14002 I = 1,NATOMS*3
14002   SCRATCH(I) = -NEWQ(I)
        CALL COMPARE(SCRATCH,NEWQ,ATMASS,NORD,NATOMS,ISINV,SYMTOL)
C
C NOW PICK A REFERENCE ATOM IN THE MOLECULE **WHICH DOES NOT LIE AT
C THE ORIGIN** AND THEN LOOP OVER ALL OTHER ATOMS HAVING THE SAME
C ATOMIC NUMBER AND COMPARABLE DISTANCE FROM THE COM.  CHECK FOR
C AXES OF ORDER 3, 4 AND 5.
C
        IREF=-1
        IOFF=1
        DO 5000 IATOM=1,NATOMS
          X=XDNRM2(3,NEWQ(IOFF),1)*ATMASS(IATOM)
          IF(X.GT.SYMTOL.AND.IREF.EQ.-1)THEN
            IREF=IATOM
            XREF=X
            ZREF=X/ATMASS(IATOM)
            IBOT=1+(IREF-1)*3
          ENDIF
          IOFF=IOFF+3
 5000   CONTINUE
C
C  HANDLE ATOMIC CALCULATION LOGIC
C
        IF(IREF.EQ.-1)THEN
          FPGRP='I h'
          GOTO 9000
        ENDIF
        DO 5001 IATOM=1,NATOMS
          IBOT2=1+(IATOM-1)*3
          X=XDNRM2(3,NEWQ(IBOT2),1)*ATMASS(IATOM)
          IF(ABS(X-XREF).LT.SYMTOL)THEN
            IF(IPRNT.GT.100)WRITE(LUOUT,50000)IREF,IATOM
50000       FORMAT(T3,'@SYMMETRY-I, Checking atoms ',I3,' and ',I3,'.')
C
C FIRST ROTATE MOLECULE SO THAT THE INTERATOMIC DISTANCE VECTOR
C   IS PARALLEL TO THE Z-AXIS, WITH BISECTOR ALONG X-AXIS.
C   THIS MEANS THAT THE TWO ATOMS LIE IN THE XZ PLANE.
C   STRUCTURE NOW IN SCRATCH(1).  HERE ONE HAS TO ALLOW FOR THE
C   POSSIBILITY THAT ATOMS I AND J ARE 180 DEGREES APART; IF THIS
C   IS THE CASE, JUST GO TO BOTTOM OF LOOP SINCE THESE DO NOT
C   DEFINE ANY AXIS UNIQUELY.
C
            CALL VEC(NEWQ(IBOT),NEWQ(IBOT2),SCRATCH(1),0)
            dtmp = xdot(3,SCRATCH(1),1,SCRATCH(1),1)
            DIST = DSQRT(dtmp)
            CALL VADD(SCRATCH(1),NEWQ(IBOT),NEWQ(IBOT2),NX,ONE)
C
C DEAL WITH THE LINEAR PROBLEM RIGHT NOW.
C
            BILEN = xdot(3,SCRATCH(1),1,SCRATCH(1),1)
            IF(BILEN.LT.1.D-12)GOTO 5001
            CALL SIAZ(SCRATCH(1),RM,1)
            CALL ZERO(SCRATCH,NX*3)
C           CALL MATMULV(SCRATCH(NX+1),NEWQ,RM,NATOMS,3,3)
            CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,3,ZILCH,
     &                 SCRATCH(NX+1),3)
C
C NOW YOU HAVE BISECTOR ALONG X.  ROTATE ABOUT X TO BRING THE TWO
C  ATOMS INTO POSITION PARALLEL TO Z!
C
            dtmp = xdot(2,SCRATCH(NX+IBOT+1),1,SCRATCH(NX+IBOT+1),1)
            DIP  = DSQRT(dtmp)
            ARGU=SCRATCH(NX+IBOT+2)/DIP
            ANGLE2=-DACOSX(ARGU,1.D-10)/DTOR
            IF(SCRATCH(NX+IBOT+1).GT.0.D0)ANGLE2=-ANGLE2
            CALL ROTM(1,ANGLE2,1,RM)
C           CALL MATMULV(SCRATCH,SCRATCH(NX+1),RM,NATOMS,3,3)
            CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,SCRATCH(NX+1),3,
     &                 ZILCH,SCRATCH,3)
C
C NOW FIND NEW VECTOR WHICH BISECTS THE TWO ATOMS IN QUESTION -
C   IT HAD BEST BE X!
C
            CALL VADD(TATB,SCRATCH(IBOT),SCRATCH(IBOT2),
     &           3,ONE)
C
C 1. TEST IF THE TWO ATOMS ARE CONNECTED BY SYMMETRY AXES, LOOPING
C     OVER POSSIBILITIES (2,3,4 AND 5).
C
            DO 5002 IAXORD=5,2,-1
              ANGIAX=360.D0/DFLOAT(IAXORD)
              ANGMG=ANGMAG(ZREF,DIST,IAXORD,IERR)
              IF(IERR.EQ.0.AND..NOT.ALLDONE)THEN
                IF(IPRNT.GE.3 .AND. NOSILENT)WRITE(LUOUT,50001)ANGMG
50001           FORMAT(T3,' ANGMAG angle is ',f8.4)
                IF(IPRNT.GE.13 .AND. NOSILENT)WRITE(LUOUT,50002)IERR,IAXORD
50002           FORMAT(T3,' IERR is ',i2,' for ',i1)
                IF(IPRNT.GE.200 .AND. NOSILENT)THEN
                  WRITE(LUOUT,*)' IN ROTATIONAL LOOP, LOOKING FOR ',
     &                 'ORDER ',IAXORD
                  WRITE(LUOUT,50003)IREF,IATOM
50003             FORMAT(' PLAYING WITH ATOMS ',I2,' AND ',I2)
                  WRITE(LUOUT,*)' IBOT AND IBOT2 ARE ',IBOT,IBOT2
                  WRITE(LUOUT,*)' ORBIT DISTANCE IS ',ORDIS
                  WRITE(LUOUT,*)' INTERATOMIC DISTANCE IS ',DIST
                  WRITE(LUOUT,*)' MAGIC ANGLE IS ',ANGMG
                  WRITE(LUOUT,*)' MAGIC VECTOR IS ',(TATB(JJ),JJ=1,3)
                ENDIF
                CALL ROTM(3,ANGMG,1,RM)
                IF(IPRNT.GE.200 .AND. NOSILENT)WRITE(LUOUT,80)
     &            (SCRATCH(JZ),JZ=1,NX)
C               CALL MATMULV(SCRATCH(NX+4),TATB,RM,1,3,3)
                CALL XGEMM('T','N',3,1,3,ONE,RM,3,TATB,3,ZILCH,
     &                     SCRATCH(NX+4),3)
                CALL SIAZ(SCRATCH(NX+4),RM,3)
                CALL ZERO(SCRATCH(NX+1),NATOMS*3*2)
C               CALL MATMULV(SCRATCH(NX+1),SCRATCH,RM,NATOMS,3,3)
                CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,SCRATCH,3,ZILCH,
     &                     SCRATCH(NX+1),3)
                CALL ROTM(3,ANGIAX,1,RM)
C               CALL MATMULV(SCRATCH(2*NX+1),SCRATCH(NX+1),
C    &               RM,NATOMS,3,3)
                CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,SCRATCH(NX+1),
     &                     3,ZILCH,SCRATCH(2*NX+1),3)
                call compare (scratch(nx+1),scratch(2*nx+1),atmass,
     &               nord,natoms,iiax,symtol)
cOLD                WRITE(6,*) "The first one"
cOLD                WRITE(6,*) (NORD(I), I=1, NATOMS) 
                IF(XYZIN) CALL IPUTREC(20, "JOBARC", "SYMEQUIV", NATOMS, 
     &                                NORD)
                IF(IIAX.EQ.0)THEN
cSB START
c The following assumes that we will run into an O or I rotation before
c running into at least 1 C2 and 1 C3 rotation.  An example where this
c is not the case is an Oh molecule defined as two superimposed tetrahedrons
c (one the inverse of the other)
cSSS                  IF(IAXORD.EQ.2.AND.TETRAH)THEN
cSSS                    ALLDONE=.TRUE.
cSSS                    FPGRP='T  '
cSSS                    IF(ISINV.EQ.0)FPGRP='T h'
cSSS                    CALL XDCOPY (3*NATOMS,SCRATCH(NX+1),1,NEWQ,1)
cSSS                    CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,
cSSS     &                   SYMTOL,IFOUND)
cSSS                    IF(IFOUND.EQ.0)THEN
cSSS                      WRITE(6,50004)FPGRP
cSSS                      CALL ERREX
cSSS                    ENDIF
cSSS                    CALL DOSYOP('S',4,1,3,NATOMS,NEWQ,SCRATCH,IERR,0)
cSSS                    CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMP,
cSSS     &                   SYMTOL)
cSSS                    IF(ICOMP.EQ.0.AND.ISINV.NE.0)THEN
cSSS                      FPGRP='T d'
cSSSC
cSSSC COMMENT OUT TWO LINES BELOW TO GET Td TO RUN AS D2.
cSSSC
cSSS                      CALL DOSYOP('C',8,1,3,NATOMS,NEWQ,SCRATCH,IERR,0)
cSSS                      CALL XDCOPY (NX,SCRATCH,1,NEWQ,1)
cSSS                    ENDIF
cSSS                  ELSEIF(IAXORD.EQ.2.AND..NOT.TETRAH)THEN
cSSS                    ITWOAX=.TRUE.
cSSS                    CALL XDCOPY(3*NATOMS,SCRATCH(NX+1),1,QTMP,1)
cSSS                  ELSEIF(IAXORD.EQ.3)THEN
cSSS                    TETRAH=.TRUE.
cSSS                    IF(ITWOAX)THEN
cSSS                      ALLDONE=.TRUE.
cSSS                      FPGRP='T  '
cSSS                      IF(ISINV.EQ.0)FPGRP='T h'
cSSS                      CALL XDCOPY (NX,QTMP,1,NEWQ,1)
cSSS                      CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,
cSSS     &                     SYMTOL,IFOUND)
cSSS                      IF(IFOUND.EQ.0)THEN
cSSS                        WRITE(6,50004)FPGRP
cSSS                        CALL ERREX
cSSS                      ENDIF
cSSS                      CALL DOSYOP('S',4,1,3,NATOMS,NEWQ,SCRATCH,IERR,0)
cSSS                      CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,
cSSS     &                     ICOMP,SYMTOL)
cSSS                      IF(ICOMP.EQ.0.AND.ISINV.NE.0)FPGRP='T d'
cSSS                    ENDIF
c We replace the above with the following which essentiall ignores all
c C2 and C3 rotations.  If, when we are done, we have not encountered a
c O or I rotation, we know it must be a T type molecule.
c
c All of the logic involving olddone, tetrah, and iaxord is optional.
c It is included only to make sure that the cartesian coordinates are
c exactly identical (as opposed to being off by a symmetry rotation).
                  if (iaxord.eq.2 .and. .not.olddone) then
                    call xdcopy(3*natoms,scratch(nx+1),1,qtmp,1)
                    if (tetrah) then
                      olddone=.true.
                    else
                      itwoax=.true.
                    endif
                  elseif (iaxord.eq.3 .and. .not.olddone) then
                    tetrah=.true.
                    if (itwoax) olddone=.true.
cSB END

                  ELSEIF(IAXORD.EQ.5)THEN
                    FPGRP='I  '
                    IF(ISINV.EQ.0)FPGRP='I h'
                    CALL XDCOPY (3*NATOMS,SCRATCH(NX+1),1,NEWQ,1)
C
C IF WE HAVE FOUND A FIVE-FOLD AXIS, FIRST REORIENT MOLECULE SO
C THAT C2 AXES LIE ALONG X, Y AND Z
C
                    CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,
     &                   SYMTOL,IFOUND)
                    IF(IFOUND.EQ.0)THEN
                      WRITE(6,50004)FPGRP
                      CALL ERREX
                    ENDIF
                    CALL ROTM(2,90.D0,1,RM)
C                   CALL MATMULV(SCRATCH,NEWQ,RM,NATOMS,3,3)
                    CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,
     &                         3,ZILCH,SCRATCH,3)
                    CALL XDCOPY (3*NATOMS,SCRATCH,1,NEWQ,1)
                    CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,
     &                   SYMTOL,IFOUND)
                    IF(IFOUND.EQ.0)THEN
                      WRITE(6,50004)FPGRP
                      CALL ERREX
                    ENDIF
                    CALL ROTM(2,90.D0,1,RM)
C                   CALL MATMULV(SCRATCH,NEWQ,RM,NATOMS,3,3)
                    CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,
     &                         3,ZILCH,SCRATCH,3)
                    CALL XDCOPY (3*NATOMS,SCRATCH,1,NEWQ,1)
C
C NOW MAKE SURE THAT C5 ORIENTATION IS CORRECT
C
                    SQ5=ONE/DSQRT(5.D0)
                    ARGX=DSQRT(0.5D0*(ONE-SQ5))
                    ANGL=DACOS(ARGX)
                    CALL ROTM(1,ANGL,0,RM)
C                   CALL MATMULV(SCRATCH,NEWQ,RM,NATOMS,3,3)
                    CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,
     &                         3,ZILCH,SCRATCH,3)
                    CALL ROTM(3,72.D0,1,RM)
C                   CALL MATMULV(SCRATCH(NX+1),SCRATCH,RM,NATOMS,3,3)
                    CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,
     &                         3,ZILCH,SCRATCH,3)
                    call compare(scratch(nx+1),scratch,atmass,
     &                   nord,natoms,icomp,symtol)
                    IF(ICOMP.NE.0)THEN
                      CALL ROTM(3,90.D0,1,RM)
C                     CALL MATMULV(SCRATCH,NEWQ,RM,NATOMS,3,3)
                      CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,
     &                         3,ZILCH,SCRATCH,3)
                      CALL XDCOPY(NX,SCRATCH,1,NEWQ,1)
                    ENDIF
                    ALLDONE=.TRUE.
                  ELSEIF(IAXORD.EQ.4)THEN
C
C IF WE HAVE FOUND A FOUR-FOLD AXIS, THEN WE ARE DONE.  THE MOLECULE
C BELONGS TO EITHER O OR Oh AND REORIENTATION IS COMPLETELY
C STRAIGHTFORWARD.
C
cSSS                    FPGRP='O  '
cSSS                    IF(ISINV.EQ.0)FPGRP='O h'
                    CALL XDCOPY (3*NATOMS,SCRATCH(NX+1),1,NEWQ,1)
                    CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,
     &                   SYMTOL,IFOUND)
                    IF(IFOUND.EQ.0)THEN
                      WRITE(6,50004)FPGRP
50004                 FORMAT(T3,'@SYMMETRY-F, Reorientation failure ',
     &                     'for point group ',A,'.')
                      CALL ERREX
                    ENDIF

cSB START
c At this point, we have either an O, Oh, or Th molecule.  In either
c case, the molecule is oriented in one of two ways (visualized with a
c cube).
c   A.  4 vertices in the XZ plane, 4 in the YZ plane (X and Y axis
c       point to edges of a cube, Z axis points to a face)
c   B.  45 degree rotation from this (all axis point to faces)
c In the B orientation, there is no way (using an X, Y, Z rotation or
c an XY, XZ, YZ reflection) to distinguish between Oh and Th.  In The
c A orientation, an XY, XZ, YZ reflection fails for Th.  Also, in the
c B orientation (but NOT the A orientation), there is a C4 rotation
c along the X axis.
c
c If the molecule is O or Oh, we want to rotate it to the B orientation
c in the end.  If it is a Th molecule, we need to exit without having
c modified the orientation.  In this case, the above XDCOPY and PERPOP
c may cause a problem (but it may not).

c Look for the C4(x) rotation (icomp=0 if B orientation))
                    CALL DOSYOP('C',4,1,1,NATOMS,NEWQ,SCRATCH,IERR,0)
                    CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMP,
     &                   SYMTOL)

c The B orientation.
                    if (icomp.eq.0) then

c      In the B orientation, an inversion center means either Oh or Th.
c      Rotate to the A orientation and check for a any reflection plane.
                      if (isinv.eq.0) then
                        call dosyop('C',8,1,3,natoms,newq,scratch,
     &                       ierr,0)
                        call dosyop('P',1,1,3,natoms,scratch,
     &                       scratch(nx+1),ierr,0)
                        call compare(scratch,scratch(nx+1),atmass,
     &                       nord,natoms,icomp,symtol)
cSSS                        WRITE(6,*) "The First one"
cSSS                        WRITE(6,*) (NORD(II), II =1, NATOMS) 
cSSS                        CALL IPUTREC(20, "JOBARC", "SYMEQUIV", NATOMS, 
cSSS     &                              NORD)
                        if (icomp.eq.0) then
                          fpgrp='O h'
                          alldone=.true.
                        endif

c      In the B orientation, no inversion center means O.
                      else
                        fpgrp='O  '
                        alldone=.true.
                      endif

c The A orientation.
                    else

c      In the A orientation, an inversion center means either Oh or Th.
c      We need to check for a reflection plane.  If found, rotate to
c      B orientation.
                      if (isinv.eq.0) then
                        call dosyop('P',1,1,3,natoms,newq,scratch(nx+1),
     &                       ierr,0)
                        call compare(newq,scratch(nx+1),atmass,nord,
     &                       natoms,icomp,symtol)
cSSS                        WRITE(6,*) "The Second One"
cSSS                        WRITE(6,*) (NORD(II), II =1, NATOMS) 
cSSS                        CALL IPUTREC(20, "JOBARC", "SYMEQUIV", NATOMS, 
cSSS     &                              NORD)
                        if (icomp.eq.0) then
                          call dosyop('C',8,1,3,natoms,newq,scratch,
     &                         ierr,0)
                          call xdcopy (nx,scratch,1,newq,1)
                          fpgrp='O h'
                          alldone=.true.
                        endif

c      In the A orientation, no inversion center means O.  Rotate it
c      to the B orientation.
                      else
                        call dosyop('C',8,1,3,natoms,newq,scratch,
     &                       ierr,0)
                        call xdcopy (nx,scratch,1,newq,1)
                        fpgrp='O  '
                        alldone=.true.
                      endif
                    endif

c The old logic was wrong
cSSS              CALL DOSYOP('C',4,1,1,NATOMS,NEWQ,SCRATCH,IERR,0)
cSSS              CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMP,
cSSS     &                     SYMTOL)
cSSS              IF(ICOMP.NE.0)THEN
cSSS               CALL DOSYOP('C',8,1,3,NATOMS,NEWQ,SCRATCH,IERR,0)
cSSS               CALL XDCOPY (NX,SCRATCH,1,NEWQ,1)
cSSS               ALLDONE=.TRUE.
cSSS              ENDIF
cSSSCJDW 12/22/94
cSSSC     This lets the Cr(CO)6 job run. CrC6 ends up with ICOMP=6 and so
cSSSC     ALLDONE is set to true. The C coordinates are different in Cr(CO)6
cSSSC     and CrC6. In the former all C atoms lie along Cartesian axes, while
cSSSC     in the latter four of the C atoms bisect axes. This is a somewhat
cSSSC     empirical fix, and a rigorous explanation would be appreciated.
cSSS              ALLDONE = .TRUE.
cSB END

                  ENDIF
                ENDIF
              ENDIF
 5002       CONTINUE
          ENDIF
 5001   CONTINUE
        IF(.NOT.ALLDONE)THEN

cSB START
c It used to be that if we did not get the ALLDONE flag, there was
c an error.  Now it just means that we are in a T-type group.

cSSS          WRITE(6,50005)
cSSS50005     FORMAT(T3,'@SYMMETRY-F, Cubic group not determined.')
cSSS          CALL ERREX

          FPGRP='T  '
          IF(ISINV.EQ.0)FPGRP='T h'
          CALL XDCOPY (NX,QTMP,1,NEWQ,1)
          CALL PERPOP('C',NEWQ,SCRATCH,ATMASS,NATOMS,NORD,
     &         SYMTOL,IFOUND)
          IF(IFOUND.EQ.0)THEN
            WRITE(6,50004)FPGRP
            CALL ERREX
          ENDIF
          CALL DOSYOP('S',4,1,3,NATOMS,NEWQ,SCRATCH,IERR,0)
          CALL COMPARE(NEWQ,SCRATCH,ATMASS,NORD,NATOMS,ICOMP,
     &         SYMTOL)
          IF(ICOMP.EQ.0.AND.ISINV.NE.0)THEN
            FPGRP='T d'
            IF (XYZIN) CALL IPUTREC(20, "JOBARC", "SYMEQUIV", NATOMS, 
     &                             NORD)
C
C COMMENT OUT TWO LINES BELOW TO GET Td TO RUN AS D2.
C
            CALL DOSYOP('C',8,1,3,NATOMS,NEWQ,SCRATCH,IERR,0)
            CALL XDCOPY (NX,SCRATCH,1,NEWQ,1)
          ENDIF
cSB END

        ENDIF
      ENDIF
C
C CUBIC POINT GROUP NOW DETERMINED.  ON WITH THE SHOW.
C
 80   FORMAT((4X,3(2X,F16.12)))
 8001 FORMAT(T3,'@SYMMETRY-I, The molecule belongs to an ',
     &     'Abelian group.')
 8002 FORMAT(T3,'@SYMMETRY-I, The molecule belongs to a point ',
     &     'group with doubly',
     &     ' degenerate representations.')
 8004 FORMAT(T3,'@SYMMETRY-I, The molecule is linear.')
 8003 FORMAT(T3,'@SYMMETRY-I, The molecule belongs to a cubic ',
     &     'point group.')
C
C This is the principal axis or computational orientation of the molecule
C
      IF(OPTRES) THEN
        CALL DGETREC(20,'JOBARC','COORD   ',NX,NEWQ)
      ENDIF
C
C This is the entry point for Abelain subgrop. All these 'GO TO 9000"
C could have been easily avoided.
 9000 CONTINUE
      IF(IPRNT.GE.0 .AND. NOSILENT) THEN
        WRITE(LUOUT,8202)
 8202   FORMAT(T3,' Principal axis orientation for molecule:')
        WRITE(LUOUT,80)(NEWQ(I),I=1,NX)
      ENDIF
C
C     CHECK SYMMETRY OPERATIONS BELONGING TO ABELIAN GROUPS
C
C  THE SYMSTR INFORMATION IS USED ONLY TO MAKE VMOL DECKS.  COMMENTED
C   OUT FOR NOW SINCE SYMEQV AND GRPOPS ASSUME "FUDGED" ORIENTATIONS.
C
      ANG = 180.D0
      IREF=0
      IOPS=1
      DO 873 I=1,6
        SYMSTR(I)='   '
  873 CONTINUE
      DO 31 I = 3,1,-1
        CALL REFLECT(NEWQ,SCRATCH,NATOMS,I)
        call compare(newq,scratch,atmass,
     &       nord,natoms,icomp,symtol)
        IF(ICOMP.EQ.0)THEN
C               SYMSTR(IOPS)(2:2)=XYZ(I)
          IF (XYZIN) THEN
              CALl IGETREC(0, "JOBARC", "SAMEPLNE", LENGTH, IJUNK)
              IF (LENGTH .LT. 0) CALL IPUTREC(20, "JOBARC", "SAMEPLNE",
     &                                   NATOMS, NORD)
          ENDIF
          IOPS=IOPS+1
          IF(IPRNT .GE. 3 .AND. NOSILENT)WRITE(LUOUT,77)I
   77     FORMAT(T3,' Reflection in plane ',i2,' is a valid ',
     $         'symmetry operation.')
          IREF = IREF + 2**I/2
        ENDIF
        CALL ROTM(I,ANG,1,RM)
        IF(IPRNT .GE. 5 .AND. NOSILENT)WRITE(LUOUT,80)
     $       ((RM(IX,JX),JX = 1,3),IX = 1,3)
C       CALL MATMULV(SCRATCH,NEWQ,RM,NATOMS,3,3)
        CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,3,ZILCH,SCRATCH,3)
        call compare(newq,scratch,atmass,
     &       nord,natoms,icomp,symtol)
        IF(ICOMP.EQ.0)THEN
C              SYMSTR(IOPS)(2:3)=XYZP(I)
          IOPS=IOPS+1
          IF(IPRNT .GE. 3 .AND. NOSILENT)WRITE(LUOUT,78)I
   78     FORMAT(T3,' Rotation about ',i2,' is a valid symmetry ',
     $         'operation ')
          IROT = IROT + 2**I/2
        endif
   31 continue
      DO 102 I = 1,NATOMS*3
  102 SCRATCH(I) = -NEWQ(I)
      call compare(newq,scratch,atmass,
     &     nord,natoms,icomp,symtol)
      IF(ICOMP.EQ.0)THEN
C            SYMSTR(IOPS)='XYZ'
        IOPS=IOPS+1
        IF(IPRNT .GE. 3 .AND. NOSILENT)WRITE(LUOUT,81)
   81   FORMAT(T3,' The molecule possesses an inversion center. ')
        IF (XYZIN) CALL IPUTREC(20, "JOBARC", "SYMEQUIV",
     &                              NATOMS, NORD)
        IF(ILINEAR.EQ.1)FPGRP = 'DXh '
        IINV=1
      ELSE
        IF(ILINEAR.EQ.1)FPGRP = 'CXv '
cOLD        IF (XYZIN) CALL IPUTREC(20, "JOBARC", "SYMEQUIV",
cOLD     &                              NATOMS, NORD)    
        CALL IGETREC(0, "JOBARC", "SYMEQUIV", LENGTH, IJUNK)
        IF (XYZIN .AND. LENGTH .LT. 0) CALL IPUTREC(20, "JOBARC", 
     &                                 "SYMEQUIV", NATOMS, NORD)    
      ENDIF
C
C     DETERMINE LARGEST ABELIAN SUBGROUP OF MOLECULE
C
      IF(IROT.EQ.0.AND.IREF.EQ.0.AND.IINV.EQ.0)PGRP = 'C1  '
      IF(IROT.EQ.0.AND.IREF.EQ.0.AND.IINV.EQ.1)PGRP = 'C i '
      IF(IROT.EQ.0.AND.IREF.NE.0.AND.IINV.EQ.0)PGRP = 'C s '
      IF(IROT.NE.0.AND.IREF.EQ.0.AND.IINV.EQ.0)PGRP = 'C2  '
      IF(IROT.NE.0.AND.IREF.NE.0.AND.IINV.EQ.0)PGRP = 'C2v '
      IF(IROT.NE.0.AND.IREF.NE.0.AND.IINV.EQ.1)PGRP = 'C2h '
      IF(IROT.EQ.7.AND.IREF.EQ.0.AND.IINV.EQ.0)PGRP = 'D2  '
c         IF(IROT.EQ.7.AND.IREF.EQ.0.AND.IINV.EQ.0)PGRP = 'C2  '
      IF(IROT.EQ.7.AND.IREF.EQ.7.AND.IINV.EQ.1)PGRP = 'D2h '
      IF(IPRNT .GE. 4 .AND. NOSILENT)WRITE(LUOUT,27)IREF,IROT,IINV
   27 FORMAT(T3,'Symmetry bits: ',3(1x,i3))
CJDW 9/16/96. Comment out 3 lines below, as they will not be needed if
C             JFS modifications work (routine SETD2XYZ). Above C2 line
C             is how JFS used to handle D2, i.e. switch to C2 always
C             was done.
CJDW 4/ 1/97. Putting these three lines back in. D2 is causing too much
C             trouble in finite difference calculations at the moment.
c
CNO 5/11/94 Remove D2 from findif calculations and also from 
C Resonance Raman Calculations.
C This restriction should no longer be needed
C (see my comments in vmlgen in vmol2ja and vib1 and geopt in joda)
C Ajith Perera, 01/2006.
CSSS
CSSS         if(pgrp.eq.'D2  ') then
CSSS           if(iflags(54).eq.3.or.iflags(54).eq.2.or.
CSSS     &        iflags2(3) .ne. 0)    pgrp = 'C2  '
CSSS         endif
c
C IFLAGS(85) is non-zero when the subgroup key-word is turned on
C
      IF(IFLAGS(85).NE.0)THEN
        IF(IPRNT .GE. 4 .AND. NOSILENT) WRITE(6,1051)
 1051   FORMAT(T3,'@SYMMETRY-I, Reference coordinates used for ',
     &       'subgroup specification.')
        CALL DUMPCORD(NATOMS,NEWQ,IATNUM)
        IF(FPGRP.EQ.'    ')FPGRP=PGRP
        IF(ISYM .EQ. 1)    PGRP='C1  '
#ifdef _DEBUG_LVL0
        Print*, "PGRP, FPGRP:", FPGRP, PGRP
#endif
        CALL SUBGROUP(IFLAGS(85),PGRP,FPGRP,IROTATE)
C 
        IF(IROTATE.EQ.1)THEN
          CALL ROTM(3,45.0D0,1,RM)
C         CALL MATMULV(SCRATCH,NEWQ,RM,NATOMS,3,3)
          CALL XGEMM('T','N',3,NATOMS,3,ONE,RM,3,NEWQ,3,ZILCH,SCRATCH,3)
          CALL XDCOPY(3*NATOMS,SCRATCH,1,NEWQ,1)
        ENDIF
        IF(IFLAGS(86)+1.NE.1)THEN
          CHRTMP=DOSTR(1)
          DOSTR(1)=DOSTR(IFLAGS(86)+1)
          DOSTR(IFLAGS(86)+1)=CHRTMP
        ENDIF
C
C In order to do geo. optimization in a subgroup, Andrew Taube, 06/20
C
        ORDNEW=IORGRP(PGRP)                
        ORDOLD=IORGRP(FPGRP)              
        IF (ORDNEW.LE.ORDOLD) FPGRP=PGRP 
      ENDIF
      CALL ZERO(ORIENT,9)
C
C     ROTATE TO DEFAULT SYMMETRY FRAME IF NEEDED - COMPLETELY DONE BY
C     BRUTE FORCE.  NO CUTE ALGORITHM USED HERE.
C
C Reorientation of the molecule depending on the point group.
      BPGRP = PGRP
      CALL ZERO(SCRATCH,NATOMS*3)
      IF(PGRP.EQ.'C1  '.OR.PGRP.EQ.'C i '.OR.
     &     PGRP.EQ.'D2  '.OR.PGRP.EQ.'D2h ')THEN
c            IF(PGRP(1:2).NE.'D2')PGRP = 'C1  '
        CALL VADD(Q,NEWQ,SCRATCH(1),NATOMS*3,ONE)
        GOTO 75
      ENDIF

C
C     C2V
C
      IF(PGRP.EQ.'C2v'.OR.PGRP.EQ.'C2h'.OR.PGRP.EQ.'C2 ')THEN
C
C     IF X IS ROTATION AXIS - SWITCH TO Z - AND PUT LARGEST MOMENT OF
C     INERTIA AROUND X - EIGENVECTORS RETURNED FROM EIG ARE SORTED
C     HIGHEST TO LOWEST FOR D2H, WE TAKE STANDARD ORIENTATION SUCH
C     THAT IX>IY>IZ
C
        CALL SETXYZ(Q,NEWQ,ORIENT,DOSTR(1),IROT,IOK,NATOMS)
        IF(IOK.EQ.0.AND.IFLAGS(86).EQ.0)THEN
          CALL SETXYZ(Q,NEWQ,ORIENT,DOSTR(2),IROT,IOK,NATOMS)
          IF(IOK.EQ.0.AND.IFLAGS(86).EQ.0)THEN
            CALL SETXYZ(Q,NEWQ,ORIENT,DOSTR(3),IROT,IOK,NATOMS)
          ENDIF
        ENDIF
C
      ELSE
C
        CALL SETXYZ(Q,NEWQ,ORIENT,DOSTR(1),IREF,IOK,NATOMS)
        IF(IOK.EQ.0.AND.IFLAGS(86).EQ.0)THEN
          CALL SETXYZ(Q,NEWQ,ORIENT,DOSTR(2),IREF,IOK,NATOMS)
          IF(IOK.EQ.0.AND.IFLAGS(86).EQ.0)THEN
            CALL SETXYZ(Q,NEWQ,ORIENT,DOSTR(3),IREF,IOK,NATOMS)
          ENDIF
        ENDIF
C
      ENDIF
c            IF(Mod(IRot,2).EQ.1)THEN
c               DO 1001 J = 1,NATOMS
c                  Q(3*J) = NEWQ(3*J-2)
c                  Q(3*J-2) = NEWQ(3*J-1)
c 1001             Q(3*J-1) = NEWQ(3*J)
c               ORIENT(1,2)=ONE
c               ORIENT(2,3)=ONE
c               ORIENT(3,1)=ONE
c            ELSEIF(Mod(IRot/2,2).EQ.1)THEN
c               DO 1002 J = 1,NATOMS
c                  Q(3*J) = NEWQ(3*J-1)
c                  Q(3*J-1) = NEWQ(3*J-2)
c 1002             Q(3*J-2) = NEWQ(3*J)
c               ORIENT(3,2)=ONE
c               ORIENT(2,1)=ONE
c               ORIENT(1,3)=ONE
c            ELSEIF(Mod(IRot/4,2).EQ.1)THEN
c               CALL VADD(Q,NEWQ,SCRATCH(1),NATOMS*3,ONE)
c               ORIENT(1,1)=ONE
c               ORIENT(2,2)=ONE
c               ORIENT(3,3)=ONE
c            ENDIF
c         ELSE
c            IF(Mod(IRef,2).EQ.1)THEN
c               DO 2001 J = 1,NATOMS
c                  Q(3*J) = NEWQ(3*J-2)
c                  Q(3*J-2) = NEWQ(3*J-1)
c 2001             Q(3*J-1) = NEWQ(3*J)
c               ORIENT(3,1)=ONE
c               ORIENT(1,2)=ONE
c               ORIENT(2,3)=ONE
c            ELSEIF(Mod(IRef/2,2).EQ.1)THEN
c               DO 2002 J = 1,NATOMS
c                  Q(3*J) = NEWQ(3*J-1)
c                  Q(3*J-1) = NEWQ(3*J-2)
c 2002             Q(3*J-2) = NEWQ(3*J)
c               ORIENT(3,2)=ONE
c               ORIENT(2,1)=ONE
c               ORIENT(1,3)=ONE
c            ELSEIF(MOD(IRef/4,2).EQ.1)THEN
c               CALL VADD(Q,NEWQ,SCRATCH(1),NX,ONE)
c               ORIENT(1,1)=ONE
c               ORIENT(2,2)=ONE
c               ORIENT(3,3)=ONE
c            ENDIF
c         ENDIF
C
C NOW RESET ORIENT TO THE IDENTITY IF THE GROUP IS ABELIAN.
C
C This is important, for abelian groups, the ORIENT is the unit matrix
      IF(IDEGEN.EQ.0)THEN
        CALL ZERO(ORIENT,9)
        ORIENT(1,1)=ONE
        ORIENT(2,2)=ONE
        ORIENT(3,3)=ONE
      ENDIF
C
C FILL SYMSTR STRING AND WRITE OUT IF THIS IS A VMOL-BASED CALCULATION.
C
C
C     IF THIS IS A VMOL-DRIVEN CALCULATION, WRITE SYMMETRY INFORMATION
C      TO VMLSYM. ALSO FOR ARGOS INPUT
C
CJDW 9/20/96. Also for SEWARD.
CADY 5/06/04. Also for GAMESS.
C
   75 IF(INTTYP.EQ.1.OR.INTTYP.EQ.2.OR.INTTYP.EQ.0.OR.INTTYP.EQ.5
     &     .OR.INTTYP.EQ.4)THEN
        IF(PGRP.EQ.'C2v')THEN
          SYMSTR(1)(2:2)='X'
          SYMSTR(2)(2:2)='Y'
          IOPS=3
        ELSEIF(PGRP.EQ.'D2h')THEN
          SYMSTR(1)(2:2)='X'
          SYMSTR(2)(2:2)='Y'
          SYMSTR(3)(3:3)='Z'
          IOPS=4
        ELSEIF(PGRP.EQ.'C2h')THEN
          SYMSTR(1)(2:2)='Z'
          SYMSTR(2)(2:3)='XY'
          IOPS=3
        ELSEIF(PGRP.EQ.'C s')THEN
          SYMSTR(1)(2:2)='Z'
          IOPS=2
        ELSEIF(PGRP.EQ.'C i')THEN
          SYMSTR(1)     ='XYZ'
          IOPS=2
        ELSEIF(PGRP.EQ.'D2 ')THEN
CJDW 9/16/96. Modification from JFS.
          CALL SETD2XYZ(NATOMS,Q,ATMASS,SYMSTR(1),SYMSTR(2),IERROR)
          IOPS=3
          IF(IERROR.EQ.1)THEN
            PGRP='C2 '
            SYMSTR(1)(2:3)='XY'
            IOPS=2
          ENDIF
c           SYMSTR(1)(2:3)='XY'
c           SYMSTR(2)(2:3)='XZ'
c           IOPS=3
        ELSEIF(PGRP.EQ.'C2 ')THEN
          SYMSTR(1)(2:3)='XY'
          IOPS=2
        ELSEIF(PGRP.EQ.'C1 ')THEN
          IOPS=1
        ENDIF
        INQUIRE(FILE='VMLSYM',EXIST=YESNO,NUMBER=JUNK)
        IF(YESNO)THEN
          OPEN(UNIT=78,FILE='VMLSYM',STATUS='OLD',FORM='UNFORMATTED')
          CLOSE(UNIT=78,STATUS='DELETE')
        ENDIF
        OPEN(UNIT=78,FILE='VMLSYM',STATUS='NEW',FORM='UNFORMATTED')
        WRITE(78)MIN(3,IOPS-1),(SYMSTR(I),I=1,3)
        CLOSE(UNIT=78,STATUS='KEEP')
      ENDIF
C
C     DO NUMERIC-ASCII CONVERSION OF IHIGH.
C
      JnkStr=some_string_func(FPGRP,IHIGH)
      FPGrp = JnkStr
      IF(FPGRP.EQ.'    ')FPGRP=BPGRP
C
C FIGURE OUT WHAT THE COMPUTATIONAL POINT GROUP IS FROM OPTCTL PARAMETER
C  ISYM.  IF IT IS SET TO 0, THEN JUST USE PGRP AS IS.  IF =1, THEN USE
C  C1.  IF =3, USE FULL POINT GROUP{SYMM=NONE(0),OFF(1),ON(2),FULL(3)}.
C
      IF(ISYM.EQ.1)PGRP='C1  '
      IF(ISYM.EQ.3)PGRP=FPGRP
C The ncycle=0 refers to the first joda run during geo. optimizations
      IF ( ncycle .EQ. 0 ) THEN
        IF(NOSILENT)WRITE(LUOUT,788)
        IF(IDEGEN.GT.0)THEN
          IF(NOSILENT)WRITE(LUOUT,1881)FPGRP
        ENDIF
        IF(IDEGEN.EQ.0)THEN
          IF(NOSILENT) 
     &       WRITE(LUOUT,1881)some_string_func(BPGRP,IHigh)
          FPGRP=BPGRP
        ENDIF
 1881   FORMAT(T3,' The full molecular point group is ',a,'.')
        IF(NOSILENT) WRITE(LUOUT,177)BPGRP
        IF(NOSILENT) WRITE(LUOUT,712)PGRP
        IF(NOSILENT) WRITE(LUOUT,788)
  788   FORMAT(80('*'))
  712   FORMAT(T3,' The computational point group is ',A,'.')
  177   FORMAT(T3,' The largest Abelian subgroup of the full ',
     $       'molecular point group is ',a,'.')
      ELSE
C
C  MAKE SURE THAT SYMMETRY HAS NOT BEEN REDUCED FROM PREVIOUS STEP.  IF
C    IT HAS, AND THIS IS NOT A TS SEARCH, THEN ABORT.
C
        IF(FPGRP.NE.TMPGRP)THEN
          ORDNEW=IORGRP(FPGRP)
          ORDOLD=IORGRP(TMPGRP)
          WRITE(LUOUT,1883)FPGRP
 1883     FORMAT(T3,'@SYMMETRY-I, Point group has changed to ',A,'.')
C
C Originally test for TS searches were done by INR .NE. 2. That
C was dangerous. Now the TSSEARCH is  a logical variable that 
C is set to TRUE for TS searches (see above, INR=4, 5, and 6). 
C Ajith Perera 08/2001. 
C 
C A bug fix, we must allow only the TS searches to proceed when
C there is a symmetry lowering. It is amazing that it took us
C 15 years to get this right! Ajith Perera 05/2005
C
        IF (ORDNEW.LT.ORDOLD) THEN
          IF (.NOT.TSSEARCH) THEN
            WRITE(LUOUT,1884)
 1884       FORMAT(T3,'@SYMMETRY-F, Descent in symmetry detected.')
            CALL ERREX
          ENDIF
        ELSE
            WRITE(LUOUT,1885)
 1885       FORMAT(T3,'@SYMMETRY-F, Ascent in symmetry detected.')
            CALL ERREX
        ENDIF
        ENDIF
      ENDIF
C
C CHECK TO SEE IF ORIENTATION MATRIX IS EMPTY.  IF IT IS, THEN SET IT EQ
C  TO THE IDENTITY MATRIX.
C
      ZTOTAL=0.D0
      DO 1032 I=1,3
        DO 1033 J=1,3
          ZTOTAL=ZTOTAL+DABS(ORIENT(I,J))
 1033   CONTINUE
 1032 CONTINUE
      IF(ZTOTAL.LT.1.D-8)THEN
        DO 1034 I=1,3
          ORIENT(I,I)=ONE
 1034   CONTINUE
      ENDIF
C
C DEFINE ORIENT TO PUT I AND Ih IN THEIR CANONICAL ORIENTATIONS (C5s
C  ALONG (0,0,1) AND (0,2/SQRT(5),1/SQRT(5)).
C
      IF(FPGRP.EQ.'I h '.OR.FPGRP.EQ.'I   ')THEN
        CALL ZERO(SCRATCH,3*NX)
        SQ5=ONE/DSQRT(5.D0)
        ARGX=DSQRT(0.5D0*(ONE-SQ5))
        ANGL=DACOS(ARGX)
        ANGL2=DACOS(SQ5)
        CALL ROTM(1,ANGL,0,ORIENT)
      ENDIF
C
C DUMP SOME NECESSARIES TO JOBARC
C
      IF(FPGRP(2:2).EQ.'X')ILINEAR=1
#ifdef _DEBUG_LVL0
      Print*, "The Orientation matrices: ORIEN2 and ORIENT"
      Write(6,*)
      CALL OUTPUT(ORIEN2, 1, 3, 1, 3, 3, 3, 0)
      Write(6,*)
      CALL OUTPUT(ORIENT, 1, 3, 1, 3, 3, 3, 0)
      Write(6,*) "The coords in /COORD/ common block"
      Print*, (Q(I), I=1, 3*NATOMS)
      Write(6,*)
      Write(6,*) "The coords NEWQ array "
      Print*, (NEWQ(I), I=1, 3*NATOMS)
      Write(6,*)

#endif
      CALL XGEMM('N','N',3,3,3,ONE,ORIEN2,3,ORIENT,3,ZILCH,
     &     SCRATCH,3)
C
#ifdef _DEBUG_LVL0
      Write(6,*)
      CALL OUTPUT(SCRATCH, 1, 3, 1, 3, 3, 3, 0)
#endif

      CALL IPUTREC(20,'JOBARC','LINEAR  ',IONE,ILINEAR)
      RETURN
      END