1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
SUBROUTINE TKSTEP(GRD, HES, SCRATCH, HESMOD, GRDMOD, STEP,
& GRDHES, DIAGHES, VEC, RFAMAT, EVRFAMAT,
& BMATRIX, HES_INTACT, FSCR, IADITNL)
C
C Control all the optimiztion alogrithms. The old EFOL (John Stanton)
C subroutine was not flexible enough to add new optimization
C algorithms. This routine act as a front end, and call appropriate
C routines depending on user's choice of a particular algorithm.
C
C Ajith Perera, March, 2000
C
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C
DOUBLE PRECISION LMBDAN, LMBDAP
LOGICAL MORSE, TS, NRORMANR, RFA, EVFTS, IGTS, QSD,
& QSTLST_CLIMB
C
#include "mxatms.par"
#include "machsp.com"
#include "coord.com"
#include "flags.h"
#include "jodaflags.com"
C
PARAMETER (STPTOL = 1.0D-12, LUOUT = 6,
& LUDONE = 80,
& EPS = 1.0D-8)
COMMON /USINT/ NX, NXM6, IARCH, NCYCLE, NUNIQUE, NOPT
C
COMMON /OPTCTL/ IPRNT, INR, IVEC, IDIE, ICURVY, IMXSTP, ISTCRT,
& IVIB, ICONTL, IRECAL, INTTYP, IDISFD, IGRDFD,
& ICNTYP,ISYM, IBASIS, XYZTol
C
DIMENSION HES(NXM6,NXM6), GRD(NXM6), SCRATCH(NX*NX),
& HESMOD(NOPT,NOPT), GRDMOD(NOPT), STEP(NXM6),
& IQFIX(3*NATOMS,3*NATOMS), DIAGHES(NOPT, NOPT),
& GRDHES(NOPT),VEC(NOPT), EVRFAMAT(NOPT+IADITNL,
& NOPT+IADITNL), RFAMAT(NOPT+IADITNL, NOPT+IADITNL),
& BMATRIX(NXM6*NX), HES_INTACT(NX*NX), FSCR(NXM6*NX),
& ENERGY(2)
C
C Form modified Hessian containing optimized coordinates
C only, and transform it to totally symmetric coordinates. Do the
C same for gradient vector as well. Do all other initilizations
C and printing. Note that STPMAX is a user defined flag. It is
C initially set in mkvmol.F but is reprocessed in setup.f.
C
IBREAK = 0
IF (iFlags2(h_IFLAGS2_geom_opt) .eq. 1) THEn
C
C This is a user defined internal optimization
C
CALL SETUP(HES, GRD, HESMOD, GRDMOD, IQFIX, STPMAX, LUOUT)
C
ELSE IF (iFlags2(h_IFLAGS2_geom_opt) .eq. 2) THEN
C
C
C This is a Cartesian optimization
CALL DCOPY(NOPT, GRD, 1, GRDMOD, 1)
C
C Vibrations and rotation must be projected out from the Hessian. In
C this particular instance unit masses at the points where atoms are
C located.
C
Do Iatoms = 1, NX/3
Fscr(Iatoms) = 1.0D0
Enddo
#ifdef _DEBUG_LVLM1
Write(6,*) "@-TKSTEP, The Hessian before the projection"
call output(Hes, 1, NXM6, 1, NXM6, NXM6, NXM6, 1)
#endif
CALL PROJEC_FC(Q, Hes, Fscr, GrdMOD, HesMOd, Scratch,
& EPS, Nx/3, .True., .True., .False.)
#ifdef _DEBUG_LVLM1
Write(6,*) "@-TKSTEP The Hessian after the projection"
call output(Hes, 1, NX, 1, NX, NX, NX, 1)
#endif
CALL SETUP(HES, GRD, HESMOD, GRDMOD, IQFIX, STPMAX, LUOUT)
CALL DCOPY(NOPT*NOPT, HES, 1, HESMOD, 1)
C
ELSE IF (iFlags2(h_IFLAGS2_geom_opt) .gt. 2) THEN
C
C This is a redundant internal optimization
C
CALL PROJEC_IFC(HES, FSCR, HESMOD, HES_INTACT, DIAGHES,
& GRD, NXM6)
CALL SETUP(HES, GRD, HESMOD, GRDMOD, IQFIX, STPMAX, LUOUT)
ENDIF
C
C Diagonalize the symmetrized Hessian. First, save the
C original symmetrized Hessian in HES to be used in QST/LST
C procedure. See the dependents of ANLYSHES that deal
C with the QST/LST procedure. Note that HESMOD and DIAGHES
C will be changed for QST/LST steps (see modfy_hessian.F).
C
CALL DCOPY(NOPT*NOPT, HESMOD, 1, HES, 1)
CSSS CALL OUTPUT(HES, 1, NOPT, 1, NOPT, NOPT, NOPT, 1)
CALL EIG(HESMOD, DIAGHES, NOPT, NOPT, 1)
IF (iFlags2(h_IFLAGS2_geom_opt) .eq. 2) CALL EVEC_SHIFT(HESMOD,
& DIAGHES, HES_INTACT, NOPT)
C
C Analyse the eigenvalues and eigenvectors of the current Hessian
C to decide the direction to follow. Note that ANALYSHES does
C meaningful work only for the transition state searches.
C
C ANLYSHES was modified to incorporate linear and quadratic
C synchronous (LST & QST) methods(?) of Schlegel et al. (Israel
C Journal of Chemistry, vol. 33, pg. 449, 1993). Both LST & QST
C approaches control the direction of the steps being taken until
C the quadratic region of the transition state is reached. Then
C the step direction is along the vector that corresponds to the
C smallest eigenvalue of the Hessian or a user-specified
C eigenvector of the Hessian. See ANALYSHES for further comments.
C Ajith Perera, 07/04.
C
C Important Note: RFAMAT and EVRFAMAT are used in ANLYSHES to
C keep the LST and QST directional vectors. They
C revert back to zero after their use in ANLYSHES so that
C there intended use in GETLAMBDA is not upset.
C
CALL ANLYSHES(HESMOD, DIAGHES, RFAMAT, EVRFAMAT, HES,
& GRDMOD, SCRATCH, VEC, NOPT, NX,
& NCYCLE, INR, IVEC, IMODE, IDIE, TS,
& NRORMANR, RFA, EVFTS, IGTS, QSD, LUOUT,
& QSTLST_CLIMB, NATOMS, IPRNT)
C
C
C Calculate the gradients along Hessian eigenvectors (GRDHES). This
C is all you need to do bare NR (MANR) optimizations. Also fill the
C scratch vector with the internal coordinates of the previous step
C (first cycle it is identical to the user given starting values!)
C
CALL ZERO(GRDHES, NOPT)
DO 1180 I = 1, NOPT
C
SCRATCH(I) = R(NOPTI(I))
C
CSSS WRITE(6,*) "The value of Grd-Mod", GRDMOD(I)
DO 1179 J = 1, NOPT
GRDHES(I)=GRDHES(I)+GRDMOD(J)*DIAGHES(J,I)
C
1179 CONTINUE
1180 CONTINUE
C
C Do the Newton-Raphson or Morse adjusted Newton-Raphson minima search.
C
MORSE = (INR .EQ. 3 .OR. INR .EQ. 5)
CSSS Write(6,*) "Debug Info: The QST and LST climb", QSTLST_CLIMB
C
C IF (NCYCLE .GE. 2) THEN
C
C The following stuff is for the line search. God I need some help
C from litrature in order to finish this. Let's comment this out
C until, I have some help from others.
C
C CALL DGETREC(20, 'JOBARC', 'TOTENERG', 1, CURR_ENRG)
C CALL DGETREC(20, 'JOBARC', 'OLDENERG', 1, PREV_ENRG)
C CALL DGETREC(20, 'JOBARC', 'OLDGRADS', NXM6,
C & SCRATCH(3*NXM6+1))
C CALL DCOPY(NXM6, GRD, 1, SCRATCH(2*NXM6+1), 1)
C CALL DCOPY(NXM6, R, 1, SCRATCH(1), 1)
C CALL DGETREC(20, 'JOBARC', 'OLDGEOMT', NXM6,
C & SCRATCH(NXM6 +1))
C ENERGY(1) = CURR_ENRG
C ENERGY(2) = PREV_ENRG
C Print*, (SCRATCH(I), I=1, 2*NOPT)
C Print*, (SCRATCH(2*NOPT+I), I=1, 2*NOPT)
C CALL LN_SEARCH(ENERGY, SCRATCH(1), SCRATCH(2*NXM6+1),
C & SCRATCH(4*NXM6+1), NXM6, 2, DQHDQ, STPTOL)
C CALL XDCOPY(NXM6, SCRATCH(2*NXM6+1), 1, GRD, 1)
C Print*, "The New Gradients", (GRD(I), I=1, NXM6)
C CALL ZERO(GRDHES, NOPT)
C DO I=1, NOPT
C Write(6,*) GRD(NOPTI(I)), NEQ(NOPTI(I))
C GRDMOD(I)= DSQRT(DFLOAT(NEQ(NOPTI(I))+1))*GRD(NOPTI(I))
C ENDDO
C
C Print*, "The Grad mod", (GRDMOD(I), I=1, NOPT)
C DO IOPT = 1, NOPT
C SCRATCH(IOPT) = SCRATCH(NOPTI(IOPT))
C DO J = 1, NOPT
C GRDHES(IOPT)=GRDHES(IOPT)+GRDMOD(J)*DIAGHES(J,IOPT)
C ENDDO
C ENDDO
C Print*, "After a line search:", (SCRATCH(i), i=1,nopt)
CC Plese zero out the SCRATCH before leave this block so what's done
CC here can not interfere with the rest.
C
C ENDIF
C
IF (NRORMANR) THEN
C
CALL NEWRAPH(SCRATCH, GRDHES, HESMOD, DIAGHES, MORSE, NOPT,
& NX, LUOUT)
C
ELSE IF (TS .OR. RFA) THEN
C
C First get the Lambda(P) and Lambda(N) parameters: Jon Baker
C J. Comput. Chem. 7, 385, 1986 and references their in. In general
C this is an eigenvector following method based on Rational Function Approximation
C that can apply for both minimas and transition states. In the case of minima
C search Lambda(N) correspond to the lowest eigenvalue of RFA matrix. There
C is no Lambda(p) parameter for minima search.
C
CALL GETLAMBDA(HESMOD, GRDHES, RFAMAT, NOPT, EVRFAMAT,
& LMBDAN, LMBDAP, IADITNL, IMODE, LUOUT,
& TS, RFA, QSTLST_CLIMB)
C
IF (RFA) CALL FLOWEVFMIN(SCRATCH, GRDHES, HESMOD, DIAGHES,
& LMBDAN, MORSE, NX, NOPT)
C
IF (EVFTS) CALL FLOWEVFTS(SCRATCH, GRDHES, HESMOD, DIAGHES,
& LMBDAN, LMBDAP, STPMAX, MORSE,
& IMODE, NX, LUOUT, IBREAK, NOPT,
& QSTLST_CLIMB)
C
ELSE IF (IGTS .OR. QSD) THEN
C
CALL QSDMINORTS(SCRATCH, GRDMOD, HESMOD, DIAGHES, RFAMAT,
& EVRFAMAT, STPMAX, EPS, IGTS, QSD, NX, NOPT,
& NCYCLE)
C
ENDIF
C
C Process the step taken: Convert to internal from symmetry coodinates,
C filter, apply the requested step size control, update the Geometry
C vector (R).
C
C Initialize the starting trust radius. At this point it is tied to
C the maximum step size, controlled by the user by setting MAX_STEP.
C STPMAX is set in mkvmol.F and setup.F.
C
BEGN_TRUST_RAD = STPMAX
CALL PROCESTEP(SCRATCH, HES, GRDMOD, SCALE, STPMAG, STEP,
& STPTOL, STPMAX, IQFIX, ISTCRT, BEGN_TRUST_RAD,
& EPS, QSTLST_CLIMB, TS)
C
C Let's do the printing. Test to see if calculation has converged.
C
CALL SUMMARY(SCRATCH, RFAMAT, GRD, SCALE, STPMAG, IQFIX,
& NOPT, NX, NXM6, IBREAK, ICONTL, LUOUT, NCYCLE,
& LUDONE, BMATRIX, HES_INTACT, FSCR, VEC,
& STEP)
C
RETURN
END
|